• search hit 1 of 1
Back to Result List

Multiple drivers of Holocene lake level changes at a lowland lake in northeastern Germany

  • Many German lakes experienced significant water level declines in recent decades that are not fully understood due to the short observation period. At a typical northeastern German groundwater-fed lake with a complex basin morphology, an acoustic sub-bottom profile was analysed together with a transect of five sediment cores, which were correlated using multiple proxies (sediment facies, -XRF, macrofossils, subfossil Cladocera). Shifts in the boundary between sand and mud deposition were controlled by lake level changes, and hence, allowed the quantification of an absolute lake level amplitude of similar to 8m for the Holocene. This clearly exceeded observed modern fluctuations of 1.3m (AD 1973-2010). Past lake level changes were traced continuously using the calcium-record. During high lake levels, massive organic muds were deposited in the deepest lake basin, whereas lower lake levels isolated the sub-basins and allowed carbonate deposition. During the beginning of the Holocene (>9700cal. a BP), lake levels were high, probably dueMany German lakes experienced significant water level declines in recent decades that are not fully understood due to the short observation period. At a typical northeastern German groundwater-fed lake with a complex basin morphology, an acoustic sub-bottom profile was analysed together with a transect of five sediment cores, which were correlated using multiple proxies (sediment facies, -XRF, macrofossils, subfossil Cladocera). Shifts in the boundary between sand and mud deposition were controlled by lake level changes, and hence, allowed the quantification of an absolute lake level amplitude of similar to 8m for the Holocene. This clearly exceeded observed modern fluctuations of 1.3m (AD 1973-2010). Past lake level changes were traced continuously using the calcium-record. During high lake levels, massive organic muds were deposited in the deepest lake basin, whereas lower lake levels isolated the sub-basins and allowed carbonate deposition. During the beginning of the Holocene (>9700cal. a BP), lake levels were high, probably due to final melting of permafrost and dead-ice remains. The establishment of water-use intensive Pinus forests caused generally low (3-4m below modern) but fluctuating lake levels (9700-6400cal. a BP). Afterwards, the lake showed an increasing trend and reached a short-term highstand at c.5000cal. a BP (4m above modern). At the transition towards a cooler and wetter late Holocene, forests dominated by Quercus and Fagus and initial human impact probably contributed more positively to groundwater recharge. Lake levels remained high between 3800 and 800cal. a BP, but the lake system was not sensitive enough to record short-term fluctuations during this period. Lake level changes were recorded again when humans profoundly affected the drainage system, land cover and lake trophy. Hence, local Holocene water level changes reflect feedbacks between catchment and vegetation characteristics and human impact superimposed by climate change at multiple temporal scales.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elisabeth Dietze, Michal Slowinski, Izabela Zawiska, Georg VehORCiDGND, Achim BrauerORCiDGND
DOI:https://doi.org/10.1111/bor.12190
ISSN:0300-9483
ISSN:1502-3885
Title of parent work (English):Boreas
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:45
Number of pages:18
First page:828
Last Page:845
Funding institution:Helmholtz Association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.