• search hit 45 of 227
Back to Result List

Deep reinforcement learning in production planning and control

  • Increasingly fast development cycles and individualized products pose major challenges for today's smart production systems in times of industry 4.0. The systems must be flexible and continuously adapt to changing conditions while still guaranteeing high throughputs and robustness against external disruptions. Deep rein- forcement learning (RL) algorithms, which already reached impressive success with Google DeepMind's AlphaGo, are increasingly transferred to production systems to meet related requirements. Unlike supervised and unsupervised machine learning techniques, deep RL algorithms learn based on recently collected sensor- and process-data in direct interaction with the environment and are able to perform decisions in real-time. As such, deep RL algorithms seem promising given their potential to provide decision support in complex environments, as production systems, and simultaneously adapt to changing circumstances. While different use-cases for deep RL emerged, a structured overview and integration of findings on theirIncreasingly fast development cycles and individualized products pose major challenges for today's smart production systems in times of industry 4.0. The systems must be flexible and continuously adapt to changing conditions while still guaranteeing high throughputs and robustness against external disruptions. Deep rein- forcement learning (RL) algorithms, which already reached impressive success with Google DeepMind's AlphaGo, are increasingly transferred to production systems to meet related requirements. Unlike supervised and unsupervised machine learning techniques, deep RL algorithms learn based on recently collected sensor- and process-data in direct interaction with the environment and are able to perform decisions in real-time. As such, deep RL algorithms seem promising given their potential to provide decision support in complex environments, as production systems, and simultaneously adapt to changing circumstances. While different use-cases for deep RL emerged, a structured overview and integration of findings on their application are missing. To address this gap, this contribution provides a systematic literature review of existing deep RL applications in the field of production planning and control as well as production logistics. From a performance perspective, it became evident that deep RL can beat heuristics significantly in their overall performance and provides superior solutions to various industrial use-cases. Nevertheless, safety and reliability concerns must be overcome before the widespread use of deep RL is possible which presumes more intensive testing of deep RL in real world applications besides the already ongoing intensive simulations.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marcel PanzerORCiD, Benedict BenderORCiDGND, Norbert GronauORCiDGND
DOI:https://doi.org/10.15488/11238
Title of parent work (English):Proceedings of the Conference on Production Systems and Logistics
Subtitle (English):A systematic literature review
Publisher:publish-Ing.
Place of publishing:Hannover
Publication type:Conference Proceeding
Language:English
Year of first publication:2021
Publication year:2021
Release date:2022/11/16
Tag:deep reinforcement learning; machine learning; production control; production planning; systematic literature review
Number of pages:11
First page:535
Last Page:545
Organizational units:Wirtschafts- und Sozialwissenschaftliche Fakultät / Wirtschaftswissenschaften / Fachgruppe Betriebswirtschaftslehre
DDC classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Peer review:Referiert
Publishing method:Open Access / Gold Open-Access
License (German):License LogoCreative Commons - Namensnennung, 3.0 Deutschland
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.