• search hit 4 of 5
Back to Result List

The 8.2 ka event : abrupt transition of the subpolar gyre toward a modern North Atlantic circulation

  • Climate model simulations of the 8.2 ka event show an abrupt strengthening of the Atlantic subpolar gyre that allows us to connect two major but apparently contradictory climate events of the early Holocene: the freshwater outburst from proglacial lakes and the onset of Labrador Sea water formation. The 8.2 ka event is the largest climatic signal of our present interglacial with a widespread cooling in the North Atlantic region about 8200 years before present. It coincides with a meltwater outburst from North American proglacial lakes that is believed to have weakened the Atlantic meridional overturning circulation and northward heat transport, followed by a recovery of the deep ocean circulation and rising temperatures after a few centuries. Marine proxy data, however, date the onset of deep water formation in Labrador Sea to the same time. The subsequent strengthening of the slope current system created a regional signal recorded as an abrupt and persistent surface temperature decrease. Although similarities in timing areClimate model simulations of the 8.2 ka event show an abrupt strengthening of the Atlantic subpolar gyre that allows us to connect two major but apparently contradictory climate events of the early Holocene: the freshwater outburst from proglacial lakes and the onset of Labrador Sea water formation. The 8.2 ka event is the largest climatic signal of our present interglacial with a widespread cooling in the North Atlantic region about 8200 years before present. It coincides with a meltwater outburst from North American proglacial lakes that is believed to have weakened the Atlantic meridional overturning circulation and northward heat transport, followed by a recovery of the deep ocean circulation and rising temperatures after a few centuries. Marine proxy data, however, date the onset of deep water formation in Labrador Sea to the same time. The subsequent strengthening of the slope current system created a regional signal recorded as an abrupt and persistent surface temperature decrease. Although similarities in timing are compelling, a mechanism to reconcile these apparently contradictory events was missing. Our simulations show that an abrupt and persistent strengthening of the Atlantic subpolar gyre provides a plausible explanation. The intense freshwater pulse triggered a transition of the gyre circulation into a different mode of operation, stabilized by internal feedbacks and persistent after the cessation of the perturbation. As a direct consequence, deep water formation around its center intensifies. This corresponds to the modern flow regime and stabilizes the meridional overturning circulation, possibly contributing to the Holocene's climatic stability.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andreas Born, Anders LevermannORCiDGND
URL:http://www.agu.org/journals/gc/
DOI:https://doi.org/10.1029/2009gc003024
ISSN:1525-2027
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Geochemistry, geophysics, geosystems. - ISSN 1525-2027. - 11 (2010), Art. Q06011
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.