• Treffer 1 von 1
Zurück zur Trefferliste

How concave are river channels?

  • For over a century, geomorphologists have attempted to unravel information about landscape evolution, and processes that drive it, using river profiles. Many studies have combined new topographic datasets with theoretical models of channel incision to infer erosion rates, identify rock types with different resistance to erosion, and detect potential regions of tectonic activity. The most common metric used to analyse river profile geometry is channel steepness, or k(s). However, the calculation of channel steepness requires the normalisation of channel gradient by drainage area. This normalisation requires a power law exponent that is referred to as the channel concavity index. Despite the concavity index being crucial in determining channel steepness, it is challenging to constrain. In this contribution, we compare both slope-area methods for calculating the concavity index and methods based on integrating drainage area along the length of the channel, using so-called "chi" (chi) analysis. We present a new chi-based method whichFor over a century, geomorphologists have attempted to unravel information about landscape evolution, and processes that drive it, using river profiles. Many studies have combined new topographic datasets with theoretical models of channel incision to infer erosion rates, identify rock types with different resistance to erosion, and detect potential regions of tectonic activity. The most common metric used to analyse river profile geometry is channel steepness, or k(s). However, the calculation of channel steepness requires the normalisation of channel gradient by drainage area. This normalisation requires a power law exponent that is referred to as the channel concavity index. Despite the concavity index being crucial in determining channel steepness, it is challenging to constrain. In this contribution, we compare both slope-area methods for calculating the concavity index and methods based on integrating drainage area along the length of the channel, using so-called "chi" (chi) analysis. We present a new chi-based method which directly compares chi values of tributary nodes to those on the main stem; this method allows us to constrain the concavity index in transient landscapes without assuming a linear relationship between chi and elevation. Patterns of the concavity index have been linked to the ratio of the area and slope exponents of the stream power incision model (m/n); we therefore construct simple numerical models obeying detachment-limited stream power and test the different methods against simulations with imposed m and n. We find that chi-based methods are better than slope-area methods at reproducing imposed m/n ratios when our numerical landscapes are subject to either transient uplift or spatially varying uplift and fluvial erodibility. We also test our methods on several real landscapes, including sites with both lithological and structural heterogeneity, to provide examples of the methods' performance and limitations. These methods are made available in a new software package so that other workers can explore how the concavity index varies across diverse landscapes, with the aim to improve our understanding of the physics behind bedrock channel incision.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr718.pdfeng
    (6281KB)

    SHA-1: ca800775d9092dcf1134e33dbeeeffdec623b233

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Simon M. MuddORCiD, Fiona J. ClubbORCiD, Boris GailletonORCiD, Martin D. HurstORCiD
URN:urn:nbn:de:kobv:517-opus4-426998
DOI:https://doi.org/10.25932/publishup-42699
ISSN:1866-8372
Titel des übergeordneten Werks (Englisch):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (718)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:29.05.2019
Erscheinungsjahr:2018
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:29.05.2019
Freies Schlagwort / Tag:BE-10-derived erosion rates; Oregon coast range; Pacific-Northwest; active tectonics; incision model; landscape evolution; longitudinal profiles; rock-uplift rates; stream-power; threshold hillslopes
Ausgabe:718
Seitenanzahl:19
Quelle:Earth Surface Dynamics 6 (2018) 2, S. 505–523 DOI: 10.5194/esurf-6-505-2018
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access
Fördermittelquelle:Copernicus
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.