• search hit 1 of 1
Back to Result List

The role of acidic amino acids in the hydration and stabilization of halophilic proteins

Die Rolle Saurer Amino Säuren bei der Hydratation und Stabilisierung von Halophilen Proteinen

  • Proteins of halophilic organisms that accumulate molar concentrations of KCl in their cytoplasm have much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity: either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations, which would stabilize the folded protein. In the course of this Ph.D. study, we investigated these possibilities using atomistic molecular dynamics simulations and classical force fields. High quality parameters describing the interaction between K+ and carboxylate groups present in acidic amino acids are indispensable for this study. We first evaluated the quality of the default parameters for these ions within the widely used AMBER ff14SB force field for proteins and found that they perform poorly. We propose new parameters, which reproduce solution activityProteins of halophilic organisms that accumulate molar concentrations of KCl in their cytoplasm have much higher content in acidic amino acids than proteins of mesophilic organisms. It has been proposed that this excess is necessary to maintain proteins hydrated in an environment with low water activity: either via direct interactions between water and the carboxylate groups of acidic amino acids or via cooperative interactions between acidic amino acids and hydrated cations, which would stabilize the folded protein. In the course of this Ph.D. study, we investigated these possibilities using atomistic molecular dynamics simulations and classical force fields. High quality parameters describing the interaction between K+ and carboxylate groups present in acidic amino acids are indispensable for this study. We first evaluated the quality of the default parameters for these ions within the widely used AMBER ff14SB force field for proteins and found that they perform poorly. We propose new parameters, which reproduce solution activity derivatives of potassium acetate solutions up to 2 mol/kg and the distances between potassium ions and carboxylate groups observed in x-ray structures of proteins. To understand the role of acidic amino acids in protein hydration, we investigated this aspect for 5 halophilic proteins in comparison with 5 mesophilic ones. Our results do not support the necessity of acidic amino acids to keep folded proteins hydrated. Proteins with a larger fraction of acidic amino acids indeed have higher hydration levels. However, the hydration level of each protein is identical at low (b_KCl = 0.15 mol/kg) and high (b_KCl = 2 mol/kg) KCl concentration. It has also been proposed that cooperative interactions between acidic amino acids with nearby hydrated cations stabilize the folded protein and slow down its solvation shell; according to this theory, the cations would be preferentially excluded from the unfolded structure. We investigate this possibility through extensive free energy calculation simulations. We find that cooperative interactions between neighboring acidic amino acids exist and are mediated by the ions in solution but are present in both folded and unfolded structures of halophilic proteins. The translational dynamics of the solvation shell is barely distinguishable between halophilic and mesophilic proteins; therefore, such a cooperative effect does not result in unusually slow solvent dynamics as has been suggested.show moreshow less
  • Die Hydratation von Proteinen ist entscheidend für die Funktion von Proteinen. Die meisten Proteine typischer Organismen existieren in Umgebungen, in denen die Elektrolytkonzentration deutlich unter 1 molar bleibt; in Medien mit höherer Konzentration stellen diese Proteine oft ihre Funktion ein. Im Gegensatz dazu existieren Proteine von halophilen Organismen in Umgebungen mit multimolaren Konzentrationen von KCl-Salz und verlieren oft ihre Funktion bei niedriger KCl-Konzentration. Das Verständnis der Mechanismen, durch die halophile Proteine in der Lage sind, bei hoher KCl-Konzentration zu funktionieren, ist wichtig, sowohl aus fundamentaler Sicht als auch wegen der Auswirkungen, die dieses Verständnis auf die Suche nach Enzymen haben wird, die in anderen Umgebungen mit hoher Salzkonzentration funktionieren (z.B. für die H2-Produktion in NaCl-reichem Wasser, wodurch Süßwasserressourcen geschont werden, oder um enzymatische Katalyse in Mischungen aus organischen Lösungsmitteln und Wasser durchzuführen, was von Interesse ist, wennDie Hydratation von Proteinen ist entscheidend für die Funktion von Proteinen. Die meisten Proteine typischer Organismen existieren in Umgebungen, in denen die Elektrolytkonzentration deutlich unter 1 molar bleibt; in Medien mit höherer Konzentration stellen diese Proteine oft ihre Funktion ein. Im Gegensatz dazu existieren Proteine von halophilen Organismen in Umgebungen mit multimolaren Konzentrationen von KCl-Salz und verlieren oft ihre Funktion bei niedriger KCl-Konzentration. Das Verständnis der Mechanismen, durch die halophile Proteine in der Lage sind, bei hoher KCl-Konzentration zu funktionieren, ist wichtig, sowohl aus fundamentaler Sicht als auch wegen der Auswirkungen, die dieses Verständnis auf die Suche nach Enzymen haben wird, die in anderen Umgebungen mit hoher Salzkonzentration funktionieren (z.B. für die H2-Produktion in NaCl-reichem Wasser, wodurch Süßwasserressourcen geschont werden, oder um enzymatische Katalyse in Mischungen aus organischen Lösungsmitteln und Wasser durchzuführen, was von Interesse ist, wenn Substrate oder Produkte schlecht wasserlöslich sind). Halophile Proteine haben einen außergewöhnlich hohen Gehalt an negativ geladenen Aminosäuren (saure Aminosäuren) und diese Aminosäuren, Bausteine der Proteine, sind wesentlich stärker hydratisiert als andere natürliche Aminosäuren. Eine intuitive Erklärung für den hohen Gehalt an sauren Aminosäuren in halophilen Proteinen ist, dass sie zur Aufrechterhaltung der Proteinhydratation bei hohen KCl-Konzentrationen notwendig sind. Diese Erklärung wurde noch nicht getestet, zum Teil, weil die Quantifizierung der Proteinhydratation in einem breiten Bereich von KCl-Konzentrationen im Experiment eine Herausforderung darstellt. In dieser Arbeit überwinden wir diese Schwierigkeit durch den Einsatz von Molekularsimulationen. Wir untersuchen 10 Proteine mit unterschiedlichem Gehalt an sauren Aminosäuren, Nettoladung und Proteingröße, um allgemeine Schlussfolgerungen ziehen zu können. Wir zeigen, dass der Hydratationsgrad aller untersuchten Proteine unempfindlich gegenüber Änderungen der KCl-Konzentration ist. Dieses Ergebnis deutet stark darauf hin, dass die Aufrechterhaltung der Proteinhydratation nicht die evolutionär treibende Kraft hinter der Häufigkeit von sauren Aminosäuren in halophilen Proteinen ist. Die Robustheit der Proteinhydratation hängt mit der Tatsache zusammen, dass positiv geladene Salzionen nicht mit dem Protein um verfügbares Wasser konkurrieren, sondern die Hydratation der Proteine mit ihrer eigenen Hydratation integrieren. Es wurde auch vorgeschlagen, dass diese Integration die Wassermoleküle in der Nähe des Proteins verlangsamt. Unsere Studie zeigt eine kaum unterscheidbare Wasserdynamik zwischen halophilen und mesophilen Proteinen.show moreshow less

Download full text files

  • SHA-512:0055f1fd37271f53b6957c6914f7f70863ab73021424b6eae6a69cabce79a6863b311e4bea1255200c2ba61a47daf899cd0cf379631fdc35ec1de90f5b13310f

Export metadata

Metadaten
Author details:Hosein Geraili DaronkolaORCiD
URN:urn:nbn:de:kobv:517-opus4-516713
DOI:https://doi.org/10.25932/publishup-51671
Reviewer(s):Ana Vila VerdeORCiDGND, Thomas R. WeiklORCiDGND, Jocelyne VreedeORCiD
Supervisor(s):Ana Vila Verde
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/09/21
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/09/06
Release date:2021/09/21
Tag:Halophile Proteine; Kraftfeld Optimierung; Molekulardynamische Simulation
Force Field Optimization; Halophilic proteins; Molecular Dynamics Simulation
Number of pages:xx, 111
RVK - Regensburg classification:UM 3195, WD 5000, VK 8560
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.