• search hit 1 of 3
Back to Result List

Critical adsorption of polyelectrolytes onto planar and convex highly charged surfaces: the nonlinear Poisson-Boltzmann approach

  • We study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces-are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-Huckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-Huckel result, such that the required critical surface charge density for polyelectrolyte adsorption sigma(c) increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density withWe study the adsorption-desorption transition of polyelectrolyte chains onto planar, cylindrical and spherical surfaces with arbitrarily high surface charge densities by massive Monte Carlo computer simulations. We examine in detail how the well known scaling relations for the threshold transition demarcating the adsorbed and desorbed domains of a polyelectrolyte near weakly charged surfaces-are altered for highly charged interfaces. In virtue of high surface potentials and large surface charge densities, the Debye-Huckel approximation is often not feasible and the nonlinear Poisson-Boltzmann approach should be implemented. At low salt conditions, for instance, the electrostatic potential from the nonlinear Poisson-Boltzmann equation is smaller than the Debye-Huckel result, such that the required critical surface charge density for polyelectrolyte adsorption sigma(c) increases. The nonlinear relation between the surface charge density and electrostatic potential leads to a sharply increasing critical surface charge density with growing ionic strength, imposing an additional limit to the critical salt concentration above which no polyelectrolyte adsorption occurs at all. We contrast our simulations findings with the known scaling results for weak critical polyelectrolyte adsorption onto oppositely charged surfaces for the three standard geometries. Finally, we discuss some applications of our results for some physical-chemical and biophysical systems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sidney J. de Carvalho, Ralf MetzlerORCiDGND, Andrey G. CherstvyORCiD
DOI:https://doi.org/10.1088/1367-2630/18/8/083037
ISSN:1367-2630
Title of parent work (English):NEW JOURNAL OF PHYSICS
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Debye screening; critical phenomena; electrostatic interactions; polyelectrolyte adsorption
Volume:18
Number of pages:17
Funding institution:Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [15/15297-4]; Deutsche Forschungsgemeinschaft; University of Potsdam; UNESP; Department of Physics of IBILCE/Sao Jose do Rio Preto
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.