• search hit 186 of 368
Back to Result List

Trees, shrubs, and land-use change

Bäume, Büsche und Landnutzungswandel

  • The global drylands cover nearly half of the terrestrial surface and are home to more than two billion people. In many drylands, ongoing land-use change transforms near-natural savanna vegetation to agricultural land to increase food production. In Southern Africa, these heterogenous savanna ecosystems are also recognized as habitats of many protected animal species, such as elephant, lion and large herds of diverse herbivores, which are of great value for the tourism industry. Here, subsistence farmers and livestock herder communities often live in close proximity to nature conservation areas. Although these land-use transformations are different regarding the future they aspire to, both processes, nature conservation with large herbivores and agricultural intensification, have in common, that they change the vegetation structure of savanna ecosystems, usually leading to destruction of trees, shrubs and the woody biomass they consist of. Such changes in woody vegetation cover and biomass are often regarded as forms of landThe global drylands cover nearly half of the terrestrial surface and are home to more than two billion people. In many drylands, ongoing land-use change transforms near-natural savanna vegetation to agricultural land to increase food production. In Southern Africa, these heterogenous savanna ecosystems are also recognized as habitats of many protected animal species, such as elephant, lion and large herds of diverse herbivores, which are of great value for the tourism industry. Here, subsistence farmers and livestock herder communities often live in close proximity to nature conservation areas. Although these land-use transformations are different regarding the future they aspire to, both processes, nature conservation with large herbivores and agricultural intensification, have in common, that they change the vegetation structure of savanna ecosystems, usually leading to destruction of trees, shrubs and the woody biomass they consist of. Such changes in woody vegetation cover and biomass are often regarded as forms of land degradation and forest loss. Global forest conservation approaches and international programs aim to stop degradation processes, also to conserve the carbon bound within wood from volatilization into earth’s atmosphere. In search for mitigation options against global climate change savannas are increasingly discussed as potential carbon sinks. Savannas, however, are not forests, in that they are naturally shaped by and adapted to disturbances, such as wildfires and herbivory. Unlike in forests, disturbances are necessary for stable, functioning savanna ecosystems and prevent these ecosystems from forming closed forest stands. Their consequently lower levels of carbon storage in woody vegetation have long been the reason for savannas to be overlooked as a potential carbon sink but recently the question was raised if carbon sequestration programs (such as REDD+) could also be applied to savanna ecosystems. However, heterogenous vegetation structure and chronic disturbances hamper the quantification of carbon stocks in savannas, and current procedures of carbon storage estimation entail high uncertainties due to methodological obstacles. It is therefore challenging to assess how future land-use changes such as agricultural intensification or increasing wildlife densities will impact the carbon storage balance of African drylands. In this thesis, I address the research gap of accurately quantifying carbon storage in vegetation and soils of disturbance-prone savanna ecosystems. I further analyse relevant drivers for both ecosystem compartments and their implications for future carbon storage under land-use change. Moreover, I show that in savannas different carbon storage pools vary in their persistence to disturbance, causing carbon bound in shrub vegetation to be most likely to experience severe losses under land-use change while soil organic carbon stored in subsoils is least likely to be impacted by land-use change in the future. I start with summarizing conventional approaches to carbon storage assessment and where and for which reasons they fail to accurately estimated savanna ecosystem carbon storage. Furthermore, I outline which future-making processes drive land-use change in Southern Africa along two pathways of land-use transformation and how these are likely to influence carbon storage. In the following chapters, I propose a new method of carbon storage estimation which is adapted to the specific conditions of disturbance-prone ecosystems and demonstrate the advantages of this approach in relation to existing forestry methods. Specifically, I highlight sources for previous over- and underestimation of savanna carbon stocks which the proposed methodology resolves. In the following chapters, I apply the new method to analyse impacts of land-use change on carbon storage in woody vegetation in conjunction with the soil compartment. With this interdisciplinary approach, I can demonstrate that indeed both, agricultural intensification and nature conservation with large herbivores, reduce woody carbon storage above- and belowground, but partly sequesters this carbon into the soil organic carbon stock. I then quantify whole-ecosystem carbon storage in different ecosystem compartments (above- and belowground woody carbon in shrubs and trees, respectively, as well as topsoil and subsoil organic carbon) of two savanna vegetation types (scrub savanna and savanna woodland). Moreover, in a space-for-time substitution I analyse how land-use changes impact carbon storage in each compartment and in the whole ecosystem. Carbon storage compartments are found to differ in their persistence to land-use change with carbon bound in shrub biomass being least persistent to future changes and subsoil organic carbon being most stable under changing land-use. I then explore which individual land-use change effects act as drivers of carbon storage through Generalized Additive Models (GAMs) and uncover non-linear effects, especially of elephant browsing, with implications for future carbon storage. In the last chapter, I discuss my findings in the larger context of this thesis and discuss relevant implications for land-use change and future-making decisions in rural Africa.show moreshow less
  • Weltweit bedecken Trockengebiete fast die Hälfte der Erdoberfläche und sind die Heimat von mehr als zwei Milliarden Menschen. In vielen Regionen wird durch den fortschreitenden Landnutzungswandel die naturnahe Savannenvegetation in landwirtschaftliche Flächen umgewandelt, um die Nahrungsmittelproduktion zu steigern. Im südlichen Afrika sind diese diversen Savannenökosysteme auch als Lebensraum für viele geschützte Tierarten wie Elefanten, Löwen und große Herden vielfältiger Pflanzenfresser bekannt, die großen Wert für die Tourismusbranche haben. Im Umfeld vieler großer Schutzgebiete leben Kleinbauern und Viehhirten oft in unmittelbarer Nachbarschaft zu diesen – oft gefährlichen – Tieren. Obwohl sich beide Landnutzungen im Hinblick darauf unterscheiden welche Zukunftsvision verfolgt wird, haben sie doch beide gemeinsam, dass sowohl Schutzgebiete mit großen Pflanzenfressern wie Elefanten als auch die Landwirtschaft, die Vegetationsstruktur von Savannenökosystemen verändern. In der Regel reduzieren beide Prozesse die holzige Biomasse imWeltweit bedecken Trockengebiete fast die Hälfte der Erdoberfläche und sind die Heimat von mehr als zwei Milliarden Menschen. In vielen Regionen wird durch den fortschreitenden Landnutzungswandel die naturnahe Savannenvegetation in landwirtschaftliche Flächen umgewandelt, um die Nahrungsmittelproduktion zu steigern. Im südlichen Afrika sind diese diversen Savannenökosysteme auch als Lebensraum für viele geschützte Tierarten wie Elefanten, Löwen und große Herden vielfältiger Pflanzenfresser bekannt, die großen Wert für die Tourismusbranche haben. Im Umfeld vieler großer Schutzgebiete leben Kleinbauern und Viehhirten oft in unmittelbarer Nachbarschaft zu diesen – oft gefährlichen – Tieren. Obwohl sich beide Landnutzungen im Hinblick darauf unterscheiden welche Zukunftsvision verfolgt wird, haben sie doch beide gemeinsam, dass sowohl Schutzgebiete mit großen Pflanzenfressern wie Elefanten als auch die Landwirtschaft, die Vegetationsstruktur von Savannenökosystemen verändern. In der Regel reduzieren beide Prozesse die holzige Biomasse im Ökosystem, indem Bäume und Sträucher entfernt, zerstört oder durch Fraßverhalten und Holzeinschlag geschädigt werden. Solche Veränderungen der holzigen Vegetationsschicht samt Einflüssen auf die Biomasse werden oft als Formen von Umweltzerstörung oder Waldverlust betrachtet. Globale Waldschutzkonzepte und internationale Programme zielen darauf ab, solche Degradationsprozesse zu stoppen und den im Holz gebundenen Kohlenstoff vor der Verflüchtigung in die Erdatmosphäre zu bewahren. Auf der Suche nach Möglichkeiten zur Eindämmung des globalen Klimawandels werden Savannen zunehmend als potenzielle Kohlenstoffsenken diskutiert. Savannen sind von Wäldern jedoch fundamental verschieden, da sie von Natur aus durch starke Störungen, wie z. B. Elefantenfraß und Buschfeuer, geprägt und an diese evolutionär angepasst sind. Anders als in Wäldern sind hier Störungen für Funktion und Stabilität von offenen Savannenökosysteme notwendig und verhindern, dass sie sich zu geschlossenen Waldbeständen oder undurchdringlichen Gestrüppen entwickeln. Folglich ist die Kohlenstoffspeicherung in der holzigen Vegetation in Savannen geringer als in Wäldern und dies war lange Zeit der Grund dafür, dass Savannen keine Beachtung als potenzielle Kohlenstoffsenke fanden. In letzter Zeit wurde jedoch zunehmend die Frage aufgeworfen, ob Programme zur Kohlenstoffbindung (wie REDD+) auch auf Savannenökosysteme angewendet werden könnten. Die heterogene Vegetationsstruktur und chronischen Störungen erschweren jedoch erheblich die Quantifizierung der Kohlenstoffvorräte in Savannen, so dass die derzeitigen Verfahren zur Schätzung der Kohlenstoffspeicherung aufgrund methodischer Hindernisse mit großen Unsicherheiten verbunden sind. Daher ist es auch schwierig abzuschätzen, wie sich künftige Landnutzungsänderungen wie die Intensivierung der Landwirtschaft oder die Erhöhung von Wildtierdichten auf die Kohlenstoffspeicher der afrikanischen Trockengebiete auswirken werden. In dieser Arbeit fasse ich zunächst die konventionellen Ansätze zur Quantifizierung von Kohlenstoffspeichern zusammen und zeige auf, wo und aus welchen Gründen sie in Savannenökosystemen versagen. Darüber hinaus skizziere ich entlang zweier Pfade der Landnutzungsänderung, welche Zukunftsvorstellungen den Landnutzungswandel im südlichen Afrika vorantreiben und wie diese voraussichtlich die Kohlenstoffspeicherung beeinflussen werden. In den folgenden Kapiteln entwickele ich eine neue Methode zur Schätzung der Kohlenstoffspeicherung, die an die spezifischen Bedingungen störungsanfälliger Ökosysteme angepasst ist, und zeige die Vorteile dieses Ansatzes gegenüber den bisherigen forstwirtschaftlichen Methoden auf. In den beiden daran anschließenden Kapiteln wende ich die neue Methode an, um die Auswirkungen von Landnutzungsänderungen auf die Kohlenstoffspeicherung zu analysieren und berücksichtige dabei auch das Verhältnis von holziger Biomasse zu im Boden gespeichertem Kohlenstoff. Mit diesem interdisziplinären Ansatz kann ich zeigen, dass sowohl die Intensivierung der Landwirtschaft als auch der Naturschutz mit großen Pflanzenfressern die ober- und unterirdische Kohlenstoffspeicherung in Büschen und Bäumen verringern, dieser Kohlenstoff jedoch nicht verloren geht, sondern teilweise in den organischen Kohlenstoffbestand des Bodens eingelagert wird. Anschließend quantifiziere ich die Kohlenstoffspeicherung im gesamten Ökosystem sowie in verschiedenen Ökosystemkompartimenten (ober- und unterirdischer Holzkohlenstoff in Sträuchern bzw. Bäumen sowie organischer Kohlenstoff im Ober- und Unterboden) von zwei verschiedenen Vegetationstypen der Studienregion. Darüber hinaus analysiere ich in einer Raum-Zeit-Substitution, wie sich zukünftige Landnutzungsänderungen auf die Kohlenstoffspeicherung in jedem Kompartiment und im gesamten Ökosystem auswirken. Die hier untersuchten Kohlenstoffspeicher unterscheiden sich in ihrer Beständigkeit gegenüber Landnutzungsänderungen, wobei jener Kohlenstoff, der in der Strauchbiomasse gebunden ist sich als am wenigsten beständig gegenüber künftigen Änderungen herausgestellt hat; demgegenüber ist der organische Kohlenstoff im Unterboden bei veränderter Landnutzung am stabilsten. Anschließend untersuche ich mit Hilfe von statistischen Modellen (Generalized Additive Models, GAMs), welche individuellen Landnutzungsfaktoren die Kohlenstoffspeicherung beeinflussen, und decke nichtlineare Effekte auf. Insbesondere Elefantenfraß kann zunächst positive Auswirkungen auf die Kohlenstoffspeicherung haben, die sich bei weiterer Intensivierung jedoch ins Gegenteil verkehrt. Dies muss bei zukünftigen Planungen berücksichtigt werden. Im letzten Kapitel diskutiere ich meine Ergebnisse im größeren Kontext dieser Arbeit und erörtere relevante Implikationen für Landnutzungsänderungen und zukünftige Entscheidungen.show moreshow less

Download full text files

  • SHA-512:9a00fe7eac6bb68329df814cb1b336466e555b007e950c22e2ee3cf9a3347c541ce7862b523052e0628fcda39d466eacfa99b21be49af79496339bae162ace1b

Export metadata

Metadaten
Author details:Liana KindermannORCiD
URN:urn:nbn:de:kobv:517-opus4-648943
DOI:https://doi.org/10.25932/publishup-64894
Subtitle (English):The future of carbon storage in an African Savanna
Subtitle (German):Die Zukunft der Kohlenstoffspeicherung in einer Afrikanischen Savanne
Reviewer(s):Anja LinstädterORCiDGND, Elmar Veenendaal, Niels BlaumORCiDGND
Supervisor(s):Anja Linstädter
Publication type:Doctoral Thesis
Language:English
Date of first publication:2024/08/01
Publication year:2024
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2024/07/19
Release date:2024/08/01
Tag:Baumsavanne; Biologie; Kohlenstoffspeicherung; Organischer Bodenkohlenstoff; Pflanzenökologie; Savanne; Störungsökologie; Vegetationsökologie
biology; carbon storage; disturbance ecology; plant ecology; savanna; soil organic carbon; vegetation ecology; woodland
Number of pages:X, 186
RVK - Regensburg classification:WI 5160
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES / 92-02 Research exposition (monographs, survey articles)
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.