• Treffer 2 von 2
Zurück zur Trefferliste

Seismic constraints on rock damaging related to a failing mountain peak

  • Large rock slope failures play a pivotal role in long-term landscape evolution and are a major concern in land use planning and hazard aspects. While the failure phase and the time immediately prior to failure are increasingly well studied, the nature of the preparation phase remains enigmatic. This knowledge gap is due, to a large degree, to difficulties associated with instrumenting high mountain terrain and the local nature of classic monitoring methods, which does not allow integral observation of large rock volumes. Here, we analyse data from a small network of up to seven seismic sensors installed during July-October 2018 (with 43 days of data loss) at the summit of the Hochvogel, a 2592 m high Alpine peak. We develop proxy time series indicative of cyclic and progressive changes of the summit. Modal analysis, horizontal-to-vertical spectral ratio data and end-member modelling analysis reveal diurnal cycles of increasing and decreasing coupling stiffness of a 260,000 m(3) large, instable rock volume, due to thermal forcing.Large rock slope failures play a pivotal role in long-term landscape evolution and are a major concern in land use planning and hazard aspects. While the failure phase and the time immediately prior to failure are increasingly well studied, the nature of the preparation phase remains enigmatic. This knowledge gap is due, to a large degree, to difficulties associated with instrumenting high mountain terrain and the local nature of classic monitoring methods, which does not allow integral observation of large rock volumes. Here, we analyse data from a small network of up to seven seismic sensors installed during July-October 2018 (with 43 days of data loss) at the summit of the Hochvogel, a 2592 m high Alpine peak. We develop proxy time series indicative of cyclic and progressive changes of the summit. Modal analysis, horizontal-to-vertical spectral ratio data and end-member modelling analysis reveal diurnal cycles of increasing and decreasing coupling stiffness of a 260,000 m(3) large, instable rock volume, due to thermal forcing. Relative seismic wave velocity changes also indicate diurnal accumulation and release of stress within the rock mass. At longer time scales, there is a systematic superimposed pattern of stress increased over multiple days and episodic stress release within a few days, expressed in an increased emission of short seismic pulses indicative of rock cracking. Our data provide essential first order information on the development of large-scale slope instabilities towards catastrophic failure. (c) 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltdzeige mehrzeige weniger

Volltext Dateien herunterladen

  • zmnr1360.pdfeng
    (27944KB)

    SHA-512a3e512096e2a6e97c7f556c288734863a916b37cca8840273d46dfd39a092b756806669faf608109448bd484130ce2a69cbf29d6fb7081ed39d5f3493cba37a4

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Michael DietzeORCiD, Michael KrautblatterORCiDGND, Luc IllienORCiDGND, Niels HoviusORCiDGND
URN:urn:nbn:de:kobv:517-opus4-568787
DOI:https://doi.org/10.25932/publishup-56878
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Untertitel (Englisch):The Hochvogel, Allgäu
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1360)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:16.11.2021
Erscheinungsjahr:2021
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:28.03.2024
Freies Schlagwort / Tag:HVSR; correlation; environmental seismology; fatigue; fundamental frequency; mass; mountain geomorphology; natural hazard; noise cross; seismic monitoring; slope failure; wasting
Ausgabe:2
Seitenanzahl:15
Quelle:Earth Surf. Process. Landforms, 46: 417–429. https://doi.org/10.1002/esp.5034
Fördernde Institution:Projekt DEAL
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.