• search hit 3 of 12
Back to Result List

Temperature-dependent electron and hole transport in disordered semiconducting polymers : analysis of energetic disorder

  • We have used space-charge limited current measurements to study the mobility of holes and electrons in two fluorene-based copolymers for temperatures from 100 to 300 K. Interpreting the results using the standard analytical model produced an Arrhenius-type temperature dependence for a limited temperature range only and mobility was found to be apparently dependent on the thickness of the polymer film. To improve on this, we have interpreted our data using a numerical model that takes into account the effects of the carrier concentration and energetic disorder on transport. This accounted for the thickness dependence and gave a more consistent temperature dependence across the full range of temperatures, giving support to the extended Gaussian disorder model for transport in disordered polymers. Furthermore, we find that the same model adequately describes both electron and hole transport without the need to explicitly include a distribution of electron traps. Room-temperature mobilities were found to be in the region of 4 x 10(-8) andWe have used space-charge limited current measurements to study the mobility of holes and electrons in two fluorene-based copolymers for temperatures from 100 to 300 K. Interpreting the results using the standard analytical model produced an Arrhenius-type temperature dependence for a limited temperature range only and mobility was found to be apparently dependent on the thickness of the polymer film. To improve on this, we have interpreted our data using a numerical model that takes into account the effects of the carrier concentration and energetic disorder on transport. This accounted for the thickness dependence and gave a more consistent temperature dependence across the full range of temperatures, giving support to the extended Gaussian disorder model for transport in disordered polymers. Furthermore, we find that the same model adequately describes both electron and hole transport without the need to explicitly include a distribution of electron traps. Room-temperature mobilities were found to be in the region of 4 x 10(-8) and 2 x 10(- 8) cm(2) V-1 s(-1) in the limit of zero field and zero carrier density with disorders of 110+/-10 and 100+/-10 meV for polymers poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N, N'-phenyl-1,4-phenylene)diamine} and poly(9,9-dioctylfluorene-co-benzothiadiazole), respectively.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:James C. Blakesley, Helen S. Clubb, Neil C. Greenham
URL:http://prb.aps.org/
DOI:https://doi.org/10.1103/Physrevb.81.045210
ISSN:1098-0121
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Physical review B. - ISSN 1098-0121. - 81 (2010), 4, Art. 045210
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.