• Treffer 1 von 1
Zurück zur Trefferliste

Gaussian-type orbital calculations for high harmonic generation in vibrating molecules

  • The response of the hydrogen molecular ion, H-2(+), to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrodinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequencyThe response of the hydrogen molecular ion, H-2(+), to few-cycle laser pulses of different intensities is simulated. To treat the coupled electron-nuclear motion, we use adiabatic potentials computed with Gaussian-type basis sets together with a heuristic ionization model for the electron and a grid representation for the nuclei. Using this mixed-basis approach, the time-dependent Schrodinger equation is solved, either within the Born-Oppenheimer approximation or with nonadiabatic couplings included. The dipole response spectra are compared to all-grid-based solutions for the three-body problem, which we take as a reference to benchmark the Gaussian-type basis set approaches. Also, calculations employing the fixed-nuclei approximation are performed, to quantify effects due to nuclear motion. For low intensities and small ionization probabilities, we get excellent agreement of the dynamics using Gaussian-type basis sets with the all-grid solutions. Our investigations suggest that high harmonic generation (HHG) and high-frequency response, in general, can be reliably modeled using Gaussian-type basis sets for the electrons for not too high harmonics. Further, nuclear motion destroys electronic coherences in the response spectra even on the time scale of about 30 fs and affects HHG intensities, which reflect the electron dynamics occurring on the attosecond time scale. For the present system, non-Born-Oppenheimer effects are small. The Gaussian-based, nonadiabatically coupled, time-dependent multisurface approach to treat quantum electron-nuclear motion beyond the non-Born-Oppenheimer approximation can be easily extended to approximate wavefunction methods, such as time-dependent configuration interaction singles (TD-CIS), for systems where no benchmarks are available.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Christoph Witzorky, Guennaddi ParamonovORCiD, Foudhil BouaklineORCiDGND, Ralph JaquetORCiD, Peter SaalfrankORCiDGND, Tillmann KlamrothORCiDGND
DOI:https://doi.org/10.1021/acs.jctc.1c00837
ISSN:1549-9618
ISSN:1549-9626
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/34747605
Titel des übergeordneten Werks (Englisch):Journal of chemical theory and computation
Untertitel (Englisch):Benchmarks for H-2(+)
Verlag:American Chemical Society
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:08.11.2021
Erscheinungsjahr:2021
Datum der Freischaltung:13.07.2023
Freies Schlagwort / Tag:Basis sets; Chemical calculations; Ionization; Lasers; Quantum mechanics
Band:17
Ausgabe:12
Seitenanzahl:13
Erste Seite:7353
Letzte Seite:7365
Fördernde Institution:Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [Kl 1387/6-1, Sa 547/14-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.