• Treffer 5 von 100
Zurück zur Trefferliste

Femtosecond-laser desorption of H-2 (D-2) from Ru(0001) : quantum and classical approaches

  • The femtosecond-laser-induced, substrate-mediated associative desorption of molecular hydrogen and deuterium from a Ru(0001) surface in the so-called DIMET limit is studied theoretically. Two widely used models, a "quantum nonadiabatic" approach and a "classical adiabatic" one are employed and compared to each other. The quantum model is realized by the Monte Carlo wave packet (MCWP) method in the framework of open-system density matrix theory: The classical approach is realized with the help of (frictional) Langevin dynamics with stochastic forces. For both models the same ground-state potential energy surface is used and the same two-temperature model adopted to describe the hot- electron-driven desorption dynamics. Apart from these common features both models are different. Still, both account well for the main experimental findings (Wagner et al. Phys. Rev. B 2005, 72, 205404). In particular, an isotope effect in desorption probabilities, the energy content of the desorbing molecules, and the scaling of these observables withThe femtosecond-laser-induced, substrate-mediated associative desorption of molecular hydrogen and deuterium from a Ru(0001) surface in the so-called DIMET limit is studied theoretically. Two widely used models, a "quantum nonadiabatic" approach and a "classical adiabatic" one are employed and compared to each other. The quantum model is realized by the Monte Carlo wave packet (MCWP) method in the framework of open-system density matrix theory: The classical approach is realized with the help of (frictional) Langevin dynamics with stochastic forces. For both models the same ground-state potential energy surface is used and the same two-temperature model adopted to describe the hot- electron-driven desorption dynamics. Apart from these common features both models are different. Still, both account well for the main experimental findings (Wagner et al. Phys. Rev. B 2005, 72, 205404). In particular, an isotope effect in desorption probabilities, the energy content of the desorbing molecules, and the scaling of these observables with laser fluence are reproduced and explained. The similarity of the results obtained with both models is traced back to the fact that, in the present case, the photodynamics takes place dominantly in the ground electronic state because the electronically excited state is rapidly quenched. The short lifetime of the excited state has also the effect that photoreaction cross sections are typically very small. An IR+vis hybrid scheme, by which the adsorbate is vibrationally excited by IR photons prior to the heating of metal electrons with the vis pulse, is shown to successfully promote the reaction even for strongly coupled adsorbate-surface systems.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Tijo Vazhappilly, Tillmann KlamrothORCiDGND, Peter SaalfrankORCiDGND, Rigoberto Hernandez
URL:http://pubs.acs.org/journal/jpccck
DOI:https://doi.org/10.1021/Jp810709k
ISSN:1932-7447
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2009
Erscheinungsjahr:2009
Datum der Freischaltung:25.03.2017
Quelle:Journal of physical chemistry C. - ISSN 1932-7447. - 113 (2009), 18, S. 7790-7801
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.