• search hit 35 of 130
Back to Result List

Deep representation learning from imbalanced medical imaging

  • Medical imaging plays an important role in disease diagnosis, treatment planning, and clinical monitoring. One of the major challenges in medical image analysis is imbalanced training data, in which the class of interest is much rarer than the other classes. Canonical machine learning algorithms suppose that the number of samples from different classes in the training dataset is roughly similar or balance. Training a machine learning model on an imbalanced dataset can introduce unique challenges to the learning problem. A model learned from imbalanced training data is biased towards the high-frequency samples. The predicted results of such networks have low sensitivity and high precision. In medical applications, the cost of misclassification of the minority class could be more than the cost of misclassification of the majority class. For example, the risk of not detecting a tumor could be much higher than referring to a healthy subject to a doctor. The current Ph.D. thesis introduces several deep learning-based approaches forMedical imaging plays an important role in disease diagnosis, treatment planning, and clinical monitoring. One of the major challenges in medical image analysis is imbalanced training data, in which the class of interest is much rarer than the other classes. Canonical machine learning algorithms suppose that the number of samples from different classes in the training dataset is roughly similar or balance. Training a machine learning model on an imbalanced dataset can introduce unique challenges to the learning problem. A model learned from imbalanced training data is biased towards the high-frequency samples. The predicted results of such networks have low sensitivity and high precision. In medical applications, the cost of misclassification of the minority class could be more than the cost of misclassification of the majority class. For example, the risk of not detecting a tumor could be much higher than referring to a healthy subject to a doctor. The current Ph.D. thesis introduces several deep learning-based approaches for handling class imbalanced problems for learning multi-task such as disease classification and semantic segmentation. At the data-level, the objective is to balance the data distribution through re-sampling the data space: we propose novel approaches to correct internal bias towards fewer frequency samples. These approaches include patient-wise batch sampling, complimentary labels, supervised and unsupervised minority oversampling using generative adversarial networks for all. On the other hand, at algorithm-level, we modify the learning algorithm to alleviate the bias towards majority classes. In this regard, we propose different generative adversarial networks for cost-sensitive learning, ensemble learning, and mutual learning to deal with highly imbalanced imaging data. We show evidence that the proposed approaches are applicable to different types of medical images of varied sizes on different applications of routine clinical tasks, such as disease classification and semantic segmentation. Our various implemented algorithms have shown outstanding results on different medical imaging challenges.show moreshow less
  • Medizinische Bildanalyse spielt eine wichtige Rolle bei der Diagnose von Krankheiten, der Behandlungsplanung, und der klinischen Überwachung. Eines der großen Probleme in der medizinischen Bildanalyse ist das Vorhandensein von nicht ausbalancierten Trainingsdaten, bei denen die Anzahl der Datenpunkte der Zielklasse in der Unterzahl ist. Die Aussagen eines Modells, welches auf einem unbalancierten Datensatz trainiert wurde, tendieren dazu Datenpunkte in die Klasse mit der Mehrzahl an Trainingsdaten einzuordnen. Die Aussagen eines solchen Modells haben eine geringe Sensitivität aber hohe Genauigkeit. Im medizinischen Anwendungsbereich kann die Einordnung eines Datenpunktes in eine falsche Klasse Schwerwiegende Ergebnisse mit sich bringen. In die Nichterkennung eines Tumors Beispielsweise brigt ein viel höheres Risiko für einen Patienten, als wenn ein gesunder Patient zum Artz geschickt wird. Das Problem des Lernens unter Nutzung von nicht ausbalancierten Trainingsdaten wird erst seit Kurzem bei der Klassifizierung von Krankheiten,Medizinische Bildanalyse spielt eine wichtige Rolle bei der Diagnose von Krankheiten, der Behandlungsplanung, und der klinischen Überwachung. Eines der großen Probleme in der medizinischen Bildanalyse ist das Vorhandensein von nicht ausbalancierten Trainingsdaten, bei denen die Anzahl der Datenpunkte der Zielklasse in der Unterzahl ist. Die Aussagen eines Modells, welches auf einem unbalancierten Datensatz trainiert wurde, tendieren dazu Datenpunkte in die Klasse mit der Mehrzahl an Trainingsdaten einzuordnen. Die Aussagen eines solchen Modells haben eine geringe Sensitivität aber hohe Genauigkeit. Im medizinischen Anwendungsbereich kann die Einordnung eines Datenpunktes in eine falsche Klasse Schwerwiegende Ergebnisse mit sich bringen. In die Nichterkennung eines Tumors Beispielsweise brigt ein viel höheres Risiko für einen Patienten, als wenn ein gesunder Patient zum Artz geschickt wird. Das Problem des Lernens unter Nutzung von nicht ausbalancierten Trainingsdaten wird erst seit Kurzem bei der Klassifizierung von Krankheiten, der Entdeckung von Tumoren und beider Segmentierung von Tumoren untersucht. In der Literatur wird hier zwischen zwei verschiedenen Ansätzen unterschieden: datenbasierte und algorithmische Ansätze. Die vorliegende Arbeit behandelt das Lernen unter Nutzung von unbalancierten medizinischen Bilddatensätzen mittels datenbasierter und algorithmischer Ansätze. Bei den datenbasierten Ansätzen ist es unser Ziel, die Datenverteilung durch gezieltes Nutzen der vorliegenden Datenbasis auszubalancieren. Dazu schlagen wir neuartige Ansätze vor, um eine ausgeglichene Einordnung der Daten aus seltenen Klassen vornehmen zu können. Diese Ansätze sind unter anderem synthesize minority class sampling, patient-wise batch normalization, und die Erstellung von komplementären Labels unter Nutzung von generative adversarial networks. Auf der Seite der algorithmischen Ansätze verändern wir den Trainingsalgorithmus, um die Tendenz in Richtung der Klasse mit der Mehrzahl an Trainingsdaten zu verringern. Dafür schlagen wir verschiedene Algorithmen im Bereich des kostenintensiven Lernens, Ensemble-Lernens und des gemeinsamen Lernens vor, um mit stark unbalancierten Trainingsdaten umgehen zu können. Wir zeigen, dass unsere vorgeschlagenen Ansätze für verschiedenste Typen von medizinischen Bildern, mit variierender Größe, auf verschiedene Anwendungen im klinischen Alltag, z. B. Krankheitsklassifizierung, oder semantische Segmentierung, anwendbar sind. Weiterhin haben unsere Algorithmen hervorragende Ergebnisse bei unterschiedlichen Wettbewerben zur medizinischen Bildanalyse gezeigt.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Mina RezaeiORCiD
URN:urn:nbn:de:kobv:517-opus4-442759
DOI:https://doi.org/10.25932/publishup-44275
Reviewer(s):Christoph MeinelORCiDGND, Nassir NavabORCiDGND, Heinz HandelsORCiDGND
Supervisor(s):Christoph Meinel
Publication type:Doctoral Thesis
Language:English
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/12/16
Release date:2020/01/29
Tag:Computervision; Maschinenlernen; medizinische Bildanalyse; tiefes Lernen; unbalancierter Datensatz
computer vision; deep learning; imbalanced learning; machine learning; medical image analysis
Number of pages:xxviii, 160
RVK - Regensburg classification:ST 301, ST 330
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
MSC classification:68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section {04 in that areag 68-00 General reference works (handbooks, dictionaries, bibliographies, etc.)
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.