• search hit 23 of 130
Back to Result List

Electro-acoustical probing of space-charge and dipole-polarization profiles in polymer dielectrics for electret and electrical-insulation applications

Elektroakustische Abtastung von elektrischen Ladungs- und Polarisationsprofilen in Polymerfolien für Elektret- und Isolations-Anwendungen

  • Electrets are dielectrics with quasi-permanent electric charge and/or dipoles, sometimes can be regarded as an electric analogy to a magnet. Since the discovery of the excellent charge retention capacity of poly(tetrafluoro ethylene) and the invention of the electret microphone, electrets have grown out of a scientific curiosity to an important application both in science and technology. The history of electret research goes hand in hand with the quest for new materials with better capacity at charge and/or dipole retention. To be useful, electrets normally have to be charged/poled to render them electro-active. This process involves electric-charge deposition and/or electric dipole orientation within the dielectrics ` surfaces and bulk. Knowledge of the spatial distribution of electric charge and/or dipole polarization after their deposition and subsequent decay is crucial in the task to improve their stability in the dielectrics. Likewise, for dielectrics used in electrical insulation applications, there are also needs forElectrets are dielectrics with quasi-permanent electric charge and/or dipoles, sometimes can be regarded as an electric analogy to a magnet. Since the discovery of the excellent charge retention capacity of poly(tetrafluoro ethylene) and the invention of the electret microphone, electrets have grown out of a scientific curiosity to an important application both in science and technology. The history of electret research goes hand in hand with the quest for new materials with better capacity at charge and/or dipole retention. To be useful, electrets normally have to be charged/poled to render them electro-active. This process involves electric-charge deposition and/or electric dipole orientation within the dielectrics ` surfaces and bulk. Knowledge of the spatial distribution of electric charge and/or dipole polarization after their deposition and subsequent decay is crucial in the task to improve their stability in the dielectrics. Likewise, for dielectrics used in electrical insulation applications, there are also needs for accumulated space-charge and polarization spatial profiling. Traditionally, space-charge accumulation and large dipole polarization within insulating dielectrics is considered undesirable and harmful to the insulating dielectrics as they might cause dielectric loss and could lead to internal electric field distortion and local field enhancement. High local electric field could trigger several aging processes and reduce the insulating dielectrics' lifetime. However, with the advent of high-voltage DC transmission and high-voltage capacitor for energy storage, these are no longer the case. There are some overlapped between the two fields of electrets and electric insulation. While quasi-permanently trapped electric-charge and/or large remanent dipole polarization are the requisites for electret operation, stably trapped electric charge in electric insulation helps reduce electric charge transport and overall reduced electric conductivity. Controlled charge trapping can help in preventing further charge injection and accumulation as well as serving as field grading purpose in insulating dielectrics whereas large dipole polarization can be utilized in energy storage applications. In this thesis, the Piezoelectrically-generated Pressure Steps (PPSs) were employed as a nondestructive method to probe the electric-charge and dipole polarization distribution in a range of thin film (several hundred micron) polymer-based materials, namely polypropylene (PP), low-density polyethylene/magnesium oxide (LDPE/MgO) nanocomposites and poly(vinylidene fluoride-co- trifluoro ethylene) (P(VDF-TrFE)) copolymer. PP film surface-treated with phosphoric acid to introduce surfacial isolated nanostructures serves as example of 2-dimensional nano-composites whereas LDPE/MgO serves as the case of 3-dimensional nano-composites with MgO nano-particles dispersed in LDPE polymer matrix. It is evidenced that the nanoparticles on the surface of acid-treated PP and in the bulk of LDPE/MgO nanocomposites improve charge trapping capacity of the respective material and prevent further charge injection and transport and that the enhanced charge trapping capacity makes PP and LDPE/MgO nanocomposites potential materials for both electret and electrical insulation applications. As for PVDF and VDF-based copolymers, the remanent spatial polarization distribution depends critically on poling method as well as specific parameters used in the respective poling method. In this work, homogeneous polarization poling of P(VDF-TrFE) copolymers with different VDF-contents have been attempted with hysteresis cyclical poling. The behaviour of remanent polarization growth and spatial polarization distribution are reported and discussed. The Piezoelectrically-generated Pressure Steps (PPSs) method has proven as a powerful method for the charge storage and transport characterization of a wide range of polymer material from nonpolar, to polar, to polymer nanocomposites category.show moreshow less
  • Elektrete sind Dielektrika mit quasi-permanenter elektrischer Ladung und/oder quasi-permanent ausgerichteten elektrischen Dipolen - das elektrische Analogon zu einem Magneten. Seit der Entdeckung der besonders hohen Stabilitaet negativer Raumladungen in Polytetrafluorethylen (PTFE, Handelsname Teflon) und der Erfindung des Elektretmikrofons ist aus der spannenden wissenschaftlichen Fragestellung nach den Ursachen der hervorragenden Ladungsspeicherung in Elektreten auch eine wichtige technische Anwendung geworden. In der Geschichte der Elektretforschung und der Elektretanwendungen geht es neben der Ursachenklaerung auch immer um die Suche nach neuen Materialien mit besserer Ladungsspeicherung und/oder Dipolpolarisation. Elektretmaterialien muessen in der Regel elektrisch aufgeladen oder gepolt werden, um die gewuenschten elektroaktiven Eigenschaften zu erhalten. Dabei werden entweder elektrische Ladungen auf der Oberflaeche oder im Volumen des Elektretmaterials deponiert und/oder elektrische Dipole im Material ausgerichtet. GenaueElektrete sind Dielektrika mit quasi-permanenter elektrischer Ladung und/oder quasi-permanent ausgerichteten elektrischen Dipolen - das elektrische Analogon zu einem Magneten. Seit der Entdeckung der besonders hohen Stabilitaet negativer Raumladungen in Polytetrafluorethylen (PTFE, Handelsname Teflon) und der Erfindung des Elektretmikrofons ist aus der spannenden wissenschaftlichen Fragestellung nach den Ursachen der hervorragenden Ladungsspeicherung in Elektreten auch eine wichtige technische Anwendung geworden. In der Geschichte der Elektretforschung und der Elektretanwendungen geht es neben der Ursachenklaerung auch immer um die Suche nach neuen Materialien mit besserer Ladungsspeicherung und/oder Dipolpolarisation. Elektretmaterialien muessen in der Regel elektrisch aufgeladen oder gepolt werden, um die gewuenschten elektroaktiven Eigenschaften zu erhalten. Dabei werden entweder elektrische Ladungen auf der Oberflaeche oder im Volumen des Elektretmaterials deponiert und/oder elektrische Dipole im Material ausgerichtet. Genaue Informationen ueber die raeumliche Verteilung der elektrischen Ladungen und/oder der Dipolpolarisation sowie deren Entwicklung im Laufe der Zeit sind entscheidend fuer eine gezielte Verbesserung der Elektretstabilitaet. Dielektrika, die zur elektrischen Isolierung von Hochspannungsanlagen eingesetzt werden, koennen ebenfalls elektrische Raumladungen und/oder Dipolpolarisationen enthalten, deren Verteilungen entscheidend fuer die Beherrschung der damit einhergehenden Eigenschaftsaenderungen sind. Traditionell gelten Raumladungen und Dipolpolarisationen in elektrischen Isolierungen als unerwuenscht und schaedlich, da sie zu erheblichen Verlusten und zu Verzerrungen der inneren elektrischen Felder fuehren koennen. Hohe lokale Felder koennen Alterungsprozesse ausloesen und die Lebensdauer der isolierenden Dielektrika erheblich verkuerzen. Mit dem Aufkommen der Hochspannungs-Gleichstromuebertragung und des Hochspannungskondensators zur Energiespeicherung in den letzten Jahren hat sich die Situation jedoch grundlegend geaendert, da Raumladungen prinzipiell nicht mehr vermeidbar sind und bei entsprechender Gestaltung der Isolierung moeglicherweise sogar von Vorteil sein koennen. Hier ergeben sich nun Ueberschneidungen und Synergien zwischen Elektreten und elektrischen Isoliermaterialien, zumal in beiden Faellen hohe elektrische Gleichfelder auftreten. Waehrend quasi-permanent gespeicherte elektrische Ladungen und/oder stark quasi- permanente oder remanente Dipolpolarisationen das wesentliche Merkmal von Elektreten sind, koennen stabil gespeicherte elektrische Ladungen in elektrischen Isolierungen dazu beitragen, den schaedlichen Ladungstransport und damit die effektive elektrische Leitfaehigkeit der Dielektrika zu reduzieren. Ein kontrolliertes Einbringen von Raumladungen kann die Injektion und die Anhaeufung weiterer Ladungen verhindern, waehrend stark Dipolpolarisationen die Kapazitaet von elektrischen Energiespeichern wesentlich erhoehen koennen. In der vorliegenden Arbeit wurden piezoelektrisch erzeugte Druckstufen (Piezoelectrically generated Pressure Steps oder PPSs) eingesetzt, um die Verteilung elektrischer Ladungen und/oder ausgerichteter elektrischer Dipole in relativ duennen polymeren Dielektrika (Mikrometerbereich) zu untersuchen. Wesentliche Probenmaterialien waren Polypropylen (PP), Komposite aus Polyethylen mit Magnesiumoxid-Nanopartikeln in geringen Mengen (LDPE/MgO) sowie Poly(vinyliden fluorid-trifluorethylen)-Copolymere (P(VDF-TrFE)). PP-Folien, die mit Phosphorsaeure oberflaechenbehandelt wurden, um voneinander isolierte Nanostrukturen an der Oberflaeche zu erzeugen, sind ein Beispiel fuer ein zweidimensionales (2-D) Nanokomposit, waehrend LDPE/MgO ein dreidimensionales (3-D) Nanokomposit darstellt. Es konnte nachgewiesen werden, dass die Nanopartikel auf der Oberflaeche von saeurebehandeltem PP und im Volumen von LDPE/MgO-Nanokompositen die Ladungsspeicherfaehigkeit des jeweiligen Materials entscheidend verbessern. Damit werden weitere Ladungsinjektionen und der Ladungstransport verhindert, was die 2-D PP- und die 3-D LDPE/MgO-Nanokomposite zu geeigneten Kandidaten sowohl fuer Elektret- als auch fuer Isolationsanwendungen macht. Bei Polyvinylidenfluorid (PVDF) und Copolymeren auf der Basis von Vinylidenfluorid (VDF) haengt die remanente raeumliche Polarisationsverteilung entscheidend von der jeweiligen Polungsmethode sowie von den Parametern des jeweiligen Polungsvorgangs ab. Hier wurde versucht, eine homogene Polung von P(VDF-TrFE)-Copolymeren mit unterschiedlichen VDF-Gehalten mit dem Verfahren der zyklischen Polung (sogenannte Hysterese-Polung) zu erzeugen. Das Entstehen der remanenten Polarisation und deren raeumliche Verteilung konnten erfasst und interpretiert werden, um Hinweise für eine optimale Polung zu erhalten. An den genannten Beispielen konnte gezeigt werden, dass die Methode der piezoelektrisch erzeugten Druckstufen (PPS) ein leistungsfaehiges Verfahren zur Charakterisierung der Ladungsspeicherung und des Ladungstransports in Dielektrika ist und dass damit ein breites Spektrum von unpolaren Polymeren ueber polare Polymerdielektrika bis hin zu polaren Nanokompositen sinnvoll untersucht werden kann. Es wurden wesentliche Erkenntnisse zur Ladungsspeicherung und zur remanten Polarisation in den untersuchten Polymeren gewonnen.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Quyet Doan NguyenORCiDGND
URN:urn:nbn:de:kobv:517-opus4-445629
DOI:https://doi.org/10.25932/publishup-44562
Supervisor(s):Reimund Gerhard, Ronald Plath
Publication type:Doctoral Thesis
Language:English
Year of first publication:2019
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/12/20
Release date:2020/03/19
Tag:Ferroelektrete; Ferroelektrizität; Hysterese; Magnesiumoxid; Piezoelektrizität; Poly(vinylidenfluorid); Polyethylen-Nanokomposite; Polymerelektrete; Polypropylen; elektrische Isolierung; elektrische Raumladung; elektroakustische Abtastung elektrischer Ladungen und Dipolpolarisationen
electrical insulation; electro-acoustic electric-charge and polarization profiling; ferroelectrets; ferroelectricity; hysteresis; magnesium oxide; piezoelectricity; poly(vinylidene fluoride); polyethylene nanocomposites; polymer electrets; polypropylene; space charge
Number of pages:105
RVK - Regensburg classification:UP 4600
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.