• search hit 2 of 2
Back to Result List

Investigation of Dynamic Properties of a Novel Capacitive-based Sensing Skin for Nondestructive Testing

  • A capacitive-based soft elastomeric strain sensor was recently developed by the authors for structural health monitoring applications. Arranged in a network configuration, the sensor becomes a sensing skin, where local deformations can be monitored over a global area. The sensor transduces a change in geometry into a measurable change in capacitance, which can be converted into strain using a previously developed electromechanical model. Prior studies have demonstrated limitations of this electromechanical model for dynamic excitations beyond 15 Hz, because of a loss in linearity in the sensor's response. In this paper, the dynamic behavior beyond 15 Hz is further studied, and a new version of the electromechanical model is proposed to accommodate dynamic strain measurements up to 40 Hz. This behavior is characterized by subjecting the sensor to a frequency sweep and identifying possible sources of nonlinearities beyond 15 Hz. Results show possible frequency dependence of the materials' Poisson's ratios, which are successfully modeledA capacitive-based soft elastomeric strain sensor was recently developed by the authors for structural health monitoring applications. Arranged in a network configuration, the sensor becomes a sensing skin, where local deformations can be monitored over a global area. The sensor transduces a change in geometry into a measurable change in capacitance, which can be converted into strain using a previously developed electromechanical model. Prior studies have demonstrated limitations of this electromechanical model for dynamic excitations beyond 15 Hz, because of a loss in linearity in the sensor's response. In this paper, the dynamic behavior beyond 15 Hz is further studied, and a new version of the electromechanical model is proposed to accommodate dynamic strain measurements up to 40 Hz. This behavior is characterized by subjecting the sensor to a frequency sweep and identifying possible sources of nonlinearities beyond 15 Hz. Results show possible frequency dependence of the materials' Poisson's ratios, which are successfully modeled and integrated into the electromechanical model. This demonstrates that the proposed sensor can be used for monitoring and evaluation of structural responses up to 40 Hz, a range covering the vast majority of the dominating frequency responses of civil infrastructures.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hussam Saleem, Austin Downey, Simon Laflamme, Matthias Kollosche, Filippo Ubertini
ISSN:0025-5327
Title of parent work (English):Materials evaluation
Publisher:American Society for Nondestructive Testing
Place of publishing:Columbus
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:capacitive sensor; nondestructive testing; sensing skin; soft elastomeric capacitor; structural health monitoring; vibration monitoring
Volume:73
Issue:10
Number of pages:8
First page:1390
Last Page:1397
Funding institution:American Society for Nondestructive Testing; Iowa Alliance for Wind Innovation and Novel Development [1001062565]; Iowa Energy Center [13-02]; U.S. National Science Foundation [4782025]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.