• Treffer 1 von 3
Zurück zur Trefferliste

Toward subsurface magnetic permeability imaging with electromagnetic induction sensors

  • In near-surface geophysics, small portable loop-loop electro-magnetic induction (EMI) sensors using harmonic sources with a constant and rather small frequency are increasingly used to investigate the electrical properties of the subsurface. For such sensors, the influence of electrical conductivity and magnetic permeability on the EMI response is well-understood. Typically, data analysis focuses on reconstructing an electrical conductivity model by inverting the out-of-phase response. However, in a variety of near-surface applications, magnetic permeability (or susceptibility) models derived from the in-phase (IP) response may provide important additional information. In view of developing a fast 3D inversion procedure of the IP response for a dense grid of measurement points, we first analyze the 3D sensitivity functions associated with a homogeneous permeable half-space. Then, we compare synthetic data computed using a linear forward-modeling method based on these sensitivity functions with synthetic data computed using fullIn near-surface geophysics, small portable loop-loop electro-magnetic induction (EMI) sensors using harmonic sources with a constant and rather small frequency are increasingly used to investigate the electrical properties of the subsurface. For such sensors, the influence of electrical conductivity and magnetic permeability on the EMI response is well-understood. Typically, data analysis focuses on reconstructing an electrical conductivity model by inverting the out-of-phase response. However, in a variety of near-surface applications, magnetic permeability (or susceptibility) models derived from the in-phase (IP) response may provide important additional information. In view of developing a fast 3D inversion procedure of the IP response for a dense grid of measurement points, we first analyze the 3D sensitivity functions associated with a homogeneous permeable half-space. Then, we compare synthetic data computed using a linear forward-modeling method based on these sensitivity functions with synthetic data computed using full nonlinear forward-modeling methods. The results indicate the correctness and applicability of our linear forward-modeling approach. Furthermore, we determine the advantages of converting IP data into apparent permeability, which, for example, allows us to extend the applicability of the linear forward-modeling method to high-magnetic environments. Finally, we compute synthetic data with the linear theory for a model consisting of a controlled magnetic target and compare the results with field data collected with a four-configuration loop-loop EMI sensor. With this field-scale experiment, we determine that our linear forward-modeling approach can reproduce measured data with sufficiently small error, and, thus, it represents the basis for developing efficient inversion approaches.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Tim KloseORCiD, Julien GuillemoteauORCiD, Francois-Xavier SimonORCiD, Jens TronickeORCiDGND
DOI:https://doi.org/10.1190/GEO2017-0827.1
ISSN:0016-8033
ISSN:1942-2156
Titel des übergeordneten Werks (Englisch):Geophysics
Untertitel (Englisch):Sensitivity computation and reconstruction of measured data
Verlag:Society of Exploration Geophysicists
Verlagsort:Tulsa
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:01.09.2018
Erscheinungsjahr:2018
Datum der Freischaltung:05.10.2021
Freies Schlagwort / Tag:Electromagnetics; Imaging; Magnetic+Susceptibility; Modeling; Near+Surface
Band:83
Ausgabe:5
Seitenanzahl:11
Erste Seite:E335
Letzte Seite:E345
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.