• search hit 1 of 5
Back to Result List

Searching for flaring star-planet interactions in AU Mic TESS observations

  • Planets that closely orbit magnetically active stars are thought to be able to interact with their magnetic fields in a way that modulates stellar activity. This modulation in phase with the planetary orbit, such as enhanced X-ray activity, chromospheric spots, radio emission, or flares, is considered the clearest sign of magnetic star-planet interaction (SPI). However, the magnitude of this interaction is poorly constrained, and the intermittent nature of the interaction is a challenge for observers. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b, is a promising target for magnetic SPI observations. We used optical light curves of AU Mic obtained by the Transiting Exoplanet Survey Satellite to search for signs of flaring SPI with AU Mic b using a customized Anderson-Darling test. In the about 50 d of observations, the flare distributions with orbital, rotational, and synodic periods were generally consistent with intrinsic stellar flaring. We found thePlanets that closely orbit magnetically active stars are thought to be able to interact with their magnetic fields in a way that modulates stellar activity. This modulation in phase with the planetary orbit, such as enhanced X-ray activity, chromospheric spots, radio emission, or flares, is considered the clearest sign of magnetic star-planet interaction (SPI). However, the magnitude of this interaction is poorly constrained, and the intermittent nature of the interaction is a challenge for observers. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b, is a promising target for magnetic SPI observations. We used optical light curves of AU Mic obtained by the Transiting Exoplanet Survey Satellite to search for signs of flaring SPI with AU Mic b using a customized Anderson-Darling test. In the about 50 d of observations, the flare distributions with orbital, rotational, and synodic periods were generally consistent with intrinsic stellar flaring. We found the strongest deviation (p = 0.07, n = 71) from intrinsic flaring with the orbital period of AU Mic b, in the high-energy half of our sample (ED > 1 s). If it reflects the true SPI signal from AU Mic b, extending the observing time by a factor of 2-3 will yield a >3 sigma detection. Continued monitoring of AU Mic may therefore reveal flaring SPI with orbital phase, while rotational modulation will smear out due to the star's strong differential rotation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ekaterina IlinORCiDGND, Katja PoppenhägerORCiDGND
DOI:https://doi.org/10.1093/mnras/stac1232
ISSN:0035-8711
ISSN:1365-2966
Title of parent work (English):Monthly notices of the Royal Astronomical Society
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2022/05/17
Publication year:2022
Release date:2024/02/01
Tag:planet-star interactions; planets and satellites: individual: AU Mic b; stars: flare; stars: individual: AU Mic
Volume:513
Issue:3
Number of pages:8
First page:4579
Last Page:4586
Funding institution:German National Scholarship Foundation; German Leibniz Community; [P67/2018]; National Science Foundation via Campus Cyberinfrastructure; Grant Award [1827153]; NASA Explorer Program; NASA [NAS 5-26555]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.