• search hit 38 of 178
Back to Result List

Doping of polyaniline by transition metal salts : current-voltage characteristics of the ITO/polymer film/metal heterostructures

  • Films of emeraldine base of polyaniline (PAni) doped by various transition metal salts have been prepared, and current-voltage characteristics of the indium-tin oxide (ITO)/PAni film/metal electrode heterostructures were investigated. It was found that the electrical characteristics of the heterostructures are greatly affected by the dopant used and the metal electrode used. Different dopants resulted in different current anomalies with asymmetric current-voltage characteristics. Depending on the dopant used, the exponential and power law of the current behavior can be distinguished. Depending on the metal electrode used, two different regimes of current passing have been found at low applied voltages, namely, a nearly ohmic regime for the indium electrode, and a diode regime for the aluminum electrode. The diode regime was found to accompany by a positive charge accumulation in the film near the film/metal interface, which creates a built-in potential in the film. The amount of positive charges accumulated at the interface andFilms of emeraldine base of polyaniline (PAni) doped by various transition metal salts have been prepared, and current-voltage characteristics of the indium-tin oxide (ITO)/PAni film/metal electrode heterostructures were investigated. It was found that the electrical characteristics of the heterostructures are greatly affected by the dopant used and the metal electrode used. Different dopants resulted in different current anomalies with asymmetric current-voltage characteristics. Depending on the dopant used, the exponential and power law of the current behavior can be distinguished. Depending on the metal electrode used, two different regimes of current passing have been found at low applied voltages, namely, a nearly ohmic regime for the indium electrode, and a diode regime for the aluminum electrode. The diode regime was found to accompany by a positive charge accumulation in the film near the film/metal interface, which creates a built-in potential in the film. The amount of positive charges accumulated at the interface and therefore the value of the built-in potential can be reversibly increased or reduced by successive runs of the applied voltage in the forward or reverse direction, respectively. (C) 2004 Elsevier B.V. All rights reservedshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:P. S. Smertenko, O. P. Dimitriev, Sigurd Schrader, Ludwig BrehmerGND
ISSN:0379-6779
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Synthetic Metals. - ISSN 0379-6779. - 146 (2004), 2, S. 187 - 196
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.