• search hit 20 of 76
Back to Result List

Metastability in reversible diffusion processes : II. Precise asymptotics for small eigenvalues

  • We continue the analysis of the problem of metastability for reversible diffusion processes, initiated in [BEGK3], with a precise analysis of the low-lying spectrum of the generator. Recall that we are considering processes with generators of the form -epsilonDelta + delF(.) del on R-d or subsets of Rd, where F is a smooth function with finitely many local minima. Here we consider only the generic situation where the depths of all local minima are different. We show that in general the exponentially small part of the spectrum is given, up to multiplicative errors tending to one, by the eigenvalues of the classical capacity matrix of the array of capacitors made of balls of radius epsilon centered at the positions of the local minima of F. We also get very precise uniform control on the corresponding eigenfunctions. Moreover, these eigenvalues can be identified with the same precision with the inverse mean metastable exit times from each minimum. In [BEGK3] it was proven that these mean times are given, again up to multiplicativeWe continue the analysis of the problem of metastability for reversible diffusion processes, initiated in [BEGK3], with a precise analysis of the low-lying spectrum of the generator. Recall that we are considering processes with generators of the form -epsilonDelta + delF(.) del on R-d or subsets of Rd, where F is a smooth function with finitely many local minima. Here we consider only the generic situation where the depths of all local minima are different. We show that in general the exponentially small part of the spectrum is given, up to multiplicative errors tending to one, by the eigenvalues of the classical capacity matrix of the array of capacitors made of balls of radius epsilon centered at the positions of the local minima of F. We also get very precise uniform control on the corresponding eigenfunctions. Moreover, these eigenvalues can be identified with the same precision with the inverse mean metastable exit times from each minimum. In [BEGK3] it was proven that these mean times are given, again up to multiplicative errors that tend to one, by the classical Eyring- Kramers formulashow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anton Bovier, Veronique Gayrard, Markus KleinGND
ISSN:1435-9855
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Journal of the European Mathematical Society. - ISSN 1435-9855. - 7 (2005), 1, S. 69 - 99
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.