• search hit 17 of 39
Back to Result List

Frozen and active seismic anisotropy beneath southern Africa

  • P receiver functions from 23 stations of the SASE experiment in southern Africa are inverted simultaneously with SKS waveforms for azimuthal anisotropy in the upper mantle. Our analysis resolves the long-standing issue of depth dependence and origins of anisotropy beneath southern Africa. In the uppermost mantle we observe anisotropy with a nearly E-W fast direction, parallel to the trend of the Limpopo belt. This anisotropy may be frozen since the Archean. At a depth of 160 km the fast direction of anisotropy changes to 40 degrees and becomes close to the recent plate motion direction. This transition is nearly coincident in depth with activation of dominant glide systems in olivine and with a pronounced change in other properties of the upper mantle. Another large change in the fast direction of anisotropy corresponds to the previously found low-S-velocity layer atop the 410-km discontinuity. Citation: Vinnik, L., S. Kiselev, M. Weber, S. Oreshin, and L. Makeyeva (2012), Frozen and active seismic anisotropy beneath southern Africa,P receiver functions from 23 stations of the SASE experiment in southern Africa are inverted simultaneously with SKS waveforms for azimuthal anisotropy in the upper mantle. Our analysis resolves the long-standing issue of depth dependence and origins of anisotropy beneath southern Africa. In the uppermost mantle we observe anisotropy with a nearly E-W fast direction, parallel to the trend of the Limpopo belt. This anisotropy may be frozen since the Archean. At a depth of 160 km the fast direction of anisotropy changes to 40 degrees and becomes close to the recent plate motion direction. This transition is nearly coincident in depth with activation of dominant glide systems in olivine and with a pronounced change in other properties of the upper mantle. Another large change in the fast direction of anisotropy corresponds to the previously found low-S-velocity layer atop the 410-km discontinuity. Citation: Vinnik, L., S. Kiselev, M. Weber, S. Oreshin, and L. Makeyeva (2012), Frozen and active seismic anisotropy beneath southern Africa, Geophys. Res. Lett., 39, L08301, doi: 10.1029/2012GL051326.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:L. Vinnik, S. Kiselev, Michael H. WeberORCiDGND, S. Oreshin, L. Makeyeva
DOI:https://doi.org/10.1029/2012GL051326
ISSN:0094-8276
Title of parent work (English):Geophysical research letters
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:39
Number of pages:6
Funding institution:RFBR [10-05-00879]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.