• Treffer 1 von 2
Zurück zur Trefferliste

Process analytical approaches for the coil-to-globule transition of poly(N-isopropylacrylamide) in a concentrated aqueous suspension

  • The coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM) microgel particles suspended in water has been investigated in situ as a function of heating and cooling rate with four optical process analytical technologies (PAT), sensitive to structural changes of the polymer. Photon Density Wave (PDW) spectroscopy, Focused Beam Reflectance Measurements (FBRM), turbidity measurements, and Particle Vision Microscope (PVM) measurements are found to be powerful tools for the monitoring of the temperature-dependent transition of such thermo-responsive polymers. These in-line technologies allow for monitoring of either the reduced scattering coefficient and the absorption coefficient, the chord length distribution, the reflected intensities, or the relative backscatter index via in-process imaging, respectively. Varying heating and cooling rates result in rate-dependent lower critical solution temperatures (LCST), with different impact of cooling and heating. Particularly, the data obtained by PDW spectroscopy can be used toThe coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM) microgel particles suspended in water has been investigated in situ as a function of heating and cooling rate with four optical process analytical technologies (PAT), sensitive to structural changes of the polymer. Photon Density Wave (PDW) spectroscopy, Focused Beam Reflectance Measurements (FBRM), turbidity measurements, and Particle Vision Microscope (PVM) measurements are found to be powerful tools for the monitoring of the temperature-dependent transition of such thermo-responsive polymers. These in-line technologies allow for monitoring of either the reduced scattering coefficient and the absorption coefficient, the chord length distribution, the reflected intensities, or the relative backscatter index via in-process imaging, respectively. Varying heating and cooling rates result in rate-dependent lower critical solution temperatures (LCST), with different impact of cooling and heating. Particularly, the data obtained by PDW spectroscopy can be used to estimate the thermodynamic transition temperature of PNIPAM for infinitesimal heating or cooling rates. In addition, an inverse hysteresis and a reversible building of micrometer-sized agglomerates are observed for the PNIPAM transition process.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr944.pdfeng
    (3565KB)

    SHA-1: 7791cdf3b848fb6897d5b11f6adf0a002119047c

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Peter Werner, Marvin MünzbergGND, Roland HassORCiDGND, Oliver ReichGND
URN:urn:nbn:de:kobv:517-opus4-431162
DOI:https://doi.org/10.25932/publishup-43116
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (944)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:04.06.2020
Erscheinungsjahr:2016
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:04.06.2020
Freies Schlagwort / Tag:Focused Beam Reflectance Measurement; Particle Vision Microscope measurement; Photon Density Wave spectroscopy; poly(N-isopropylacrylamide); rate-dependent lower critical solution temperature; turbidity measurement
Ausgabe:944
Seitenanzahl:15
Erste Seite:807
Letzte Seite:819
Quelle:Analytical and Bioanalytical Chemistry 409 (2017) 807–819 DOI: 10.1007/s00216-016-0050-7
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.