• Treffer 1 von 1
Zurück zur Trefferliste

Probing the oxidation state of transition metal complexes

  • Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) asTransition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of Mn-III in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr656.pdfeng
    (2711KB)

    SHA-1: ee8434efa267e6b4cfb7446d0cd980855dd44ac3

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Markus Kubin, Meiyuan GuoORCiD, Thomas Kroll, Heike Löchel, Erik Källman, Michael L. Baker, Rolf MitznerORCiDGND, Sheraz GulORCiD, Jan KernORCiD, Alexander FöhlischORCiDGND, Alexei Erko, Uwe Bergmann, Vittal Yachandra, Junko Yano, Marcus Lundberg, Philippe Wernet
URN:urn:nbn:de:kobv:517-opus4-425057
DOI:https://doi.org/10.25932/publishup-42505
ISSN:1866-8372
Titel des übergeordneten Werks (Englisch):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Untertitel (Englisch):a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (656)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:27.02.2019
Erscheinungsjahr:2018
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:27.02.2019
Freies Schlagwort / Tag:FE; atomic multiplet; electronic-structure; iron complexes; ligand; manganese; photosystem-II; spectra; spectroscopy; water-oxidation
Ausgabe:656
Seitenanzahl:17
Quelle:Chemical Science 9 (2018), pp.6813–6829 DOI 10.1039/c8sc00550h
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer Review:Referiert
Publikationsweg:Open Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.