• search hit 23 of 29
Back to Result List

Proteasomal degradation of glycated proteins depends on substrate unfolding

  • The Maillard reaction generates protein modifications which can accumulate during hyperglycemia or aging and may have inflammatory consequences. The proteasome is one of the major intracellular systems involved in the proteolytic degradation of modified proteins but its role in the degradation of glycated proteins is scarcely studied. In this study, chemical and structural changes of glycated myoglobin were analyzed and its degradation by 20S proteasome was studied. Myoglobin was incubated with physiological (5-10 mM), moderate (50-100 mM) and severe levels (300 mM) of glucose or methylglyoxal (MGO, 50 mM). Glycation increased myoglobin's fluorescence and surface hydrophobicity. Severe glycation generated crosslinked proteins as shown by gel electrophoresis. The concentration of advanced glycation endproducts (AGEs) N-epsilon-carboxymethyl lysine (CML), N-epsilon-carboxyethyl lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), pentosidine and pyrraline was analyzed after enzymatic hydrolysis followed by UPLC-MS/MS. HigherThe Maillard reaction generates protein modifications which can accumulate during hyperglycemia or aging and may have inflammatory consequences. The proteasome is one of the major intracellular systems involved in the proteolytic degradation of modified proteins but its role in the degradation of glycated proteins is scarcely studied. In this study, chemical and structural changes of glycated myoglobin were analyzed and its degradation by 20S proteasome was studied. Myoglobin was incubated with physiological (5-10 mM), moderate (50-100 mM) and severe levels (300 mM) of glucose or methylglyoxal (MGO, 50 mM). Glycation increased myoglobin's fluorescence and surface hydrophobicity. Severe glycation generated crosslinked proteins as shown by gel electrophoresis. The concentration of advanced glycation endproducts (AGEs) N-epsilon-carboxymethyl lysine (CML), N-epsilon-carboxyethyl lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), pentosidine and pyrraline was analyzed after enzymatic hydrolysis followed by UPLC-MS/MS. Higher concentrations of glucose increased all analyzed AGEs and incubation with MGO led to a pronounced increase of CEL and MG-H1. The binding of the heme group to apo-myoglobin was decreased with increasing glycation indicating the loss of tertiary protein structure. Proteasomal degradation of modified myoglobin compared to native myoglobin depends on the degree of glycation: physiological conditions decreased proteasomal degradation whereas moderate glycation increased degradation. Severe glycation again decreased proteolytic cleavage which might be due to crosslinking of protein monomers. The activity of the proteasomal subunit beta 5 is influenced by the presence of glycated myoglobin. In conclusion, the role of the proteasome in the degradation of glycated proteins is highly dependent on the level of glycation and consequent protein unfolding.show moreshow less

Download full text files

  • pmnr1224.pdfeng
    (1809KB)

    SHA-512:b91144f5da593c9fb0ab897a11de2e3a0c9054ff6e07f315bae989e8ddd6cb21472e0883499633afba94dacd5df9268a1282b66443d1e56e970e3737acc46072

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jana RaupbachORCiD, Christiane OttORCiDGND, Jeannette KönigORCiDGND, Tilman GruneORCiDGND
URN:urn:nbn:de:kobv:517-opus4-527570
DOI:https://doi.org/10.25932/publishup-52757
ISSN:1866-8372
Title of parent work (German):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):preferred degradation of moderately modified myoglobin
Publication type:Postprint
Language:English
Date of first publication:2022/03/02
Publication year:2020
Publishing institution:Universität Potsdam
Release date:2022/03/02
Tag:20S proteasome; advanced glycation endproducts; glycation; heme; myoglobin
Number of pages:9
First page:516
Last Page:524
Source:Free Radical Biology and Medicine 152 (2020) 516-524 DOI: 10.1016/j.freeradbiomed.2019.11.024
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.