• search hit 1 of 11
Back to Result List

Wavelet coherence analysis of broadband array data recorded at Stromboli volcano, Italy

  • We present a wavelet coherence method that is capable of displaying local coherence information between two seismic stations in the sense of a spectrogram. We have analyzed the vertical components of a 20-min-long time series from four stations that were situated in the seismic near field of Stromboli volcano. Typical volcanic seismic signals recorded in the near field of Stromboli volcano consist of continuous volcanic tremor superimposed on frequent Strombolian explosion signals. The tremor exhibits a banded and frequency-stable structure, whereas the broadband explosion signals span two or three frequency decades. We demonstrate that signals related to explosion earthquakes are strongly correlated within the network over 1.5 frequency decades. Using synthetic data, we show how coherent signal portions can be extracted out of noisy data using a coherence-filtering method. A time delay analysis using coherence information results in a coarse source location estimation that lies within the crater region. With the exception of randomlyWe present a wavelet coherence method that is capable of displaying local coherence information between two seismic stations in the sense of a spectrogram. We have analyzed the vertical components of a 20-min-long time series from four stations that were situated in the seismic near field of Stromboli volcano. Typical volcanic seismic signals recorded in the near field of Stromboli volcano consist of continuous volcanic tremor superimposed on frequent Strombolian explosion signals. The tremor exhibits a banded and frequency-stable structure, whereas the broadband explosion signals span two or three frequency decades. We demonstrate that signals related to explosion earthquakes are strongly correlated within the network over 1.5 frequency decades. Using synthetic data, we show how coherent signal portions can be extracted out of noisy data using a coherence-filtering method. A time delay analysis using coherence information results in a coarse source location estimation that lies within the crater region. With the exception of randomly fluctuating coherence peaks, low correlations have been observed in the characteristic bands that are assumed to be generated by continuous tremor. In the low-frequency band that is related to the ocean microseisms (period approximate to 4-8 sec), we observe mostly high correlation that breaks down during the appearance of explosion earthquake signals. Based on further analysis using the inverse wavelet transformation, we propose a model that describes the breakdown phenomenon as a superposition of two independent eventsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Thorsten Bartosch, Joachim WassermannORCiDGND
ISSN:0037-1106
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Bulletin of the Seismological Society of America. - ISSN 0037-1106. - 94 (2004), 1, S. 44 - 52
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.