The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 29 of 1413
Back to Result List

Investigation of metal-halide-perovskites by state-of-the-art synchrotron-radiation methods

Untersuchung von Metallhalogenid-Perowskiten mit modernsten Synchrotronstrahlungsmethoden

  • My thesis chiefly aims to shed light on the favourable properties of LHP semiconductors from the point of view of their electronic structure. Currently, various hypotheses are circulating to explain the exceptionally favourable transport properties of LHPs. Seeking an explanation for the low non-radiative recombination rates and long carrier lifetimes is particularly interesting to the halide perovskites research community. The first part of this work investigates the two main hypotheses that are believed to play a significant role: the existence of a giant Rashba effect and large polarons. The experimental method of ARPES is mainly applied to verify their credibility. The first hypothesis presumes that a giant Rashba effect restricts the recombination losses of the charge carriers by making the band gap slightly indirect. The Rashba effect is based on a strong SOC that could appear in LHPs thanks to incorporating the heavy element Pb in their structure. Earlier experimental work had pointed out this effect at the VBM of a hybridMy thesis chiefly aims to shed light on the favourable properties of LHP semiconductors from the point of view of their electronic structure. Currently, various hypotheses are circulating to explain the exceptionally favourable transport properties of LHPs. Seeking an explanation for the low non-radiative recombination rates and long carrier lifetimes is particularly interesting to the halide perovskites research community. The first part of this work investigates the two main hypotheses that are believed to play a significant role: the existence of a giant Rashba effect and large polarons. The experimental method of ARPES is mainly applied to verify their credibility. The first hypothesis presumes that a giant Rashba effect restricts the recombination losses of the charge carriers by making the band gap slightly indirect. The Rashba effect is based on a strong SOC that could appear in LHPs thanks to incorporating the heavy element Pb in their structure. Earlier experimental work had pointed out this effect at the VBM of a hybrid LHP as a viable explanation for the long lifetimes of the charge carriers. My systematic ARPES studies on hybrid MAPbBr3 and spin-resolved ARPES studies on the inorganic CsPbBr3 disprove the presence of any Rashba effect in the VBM of the reported order of magnitude. Therefore, neither the spin texture nor an indirect band gap character at the VBM in the bulk or at the surface can explain the high efficiency of LHP. In case of existence, this effect is in terms of the Rashba parameter at least a factor of a hundred smaller than previously assumed. The second hypothesis proposes large polaron formation in the electronic structure of LHPs and attributes it to their high defect tolerance and low non-radiative recombination rate. Because the perovskite structure consists of negative and positive ions, polarons of this kind can be expected due to the Coulomb interaction between carriers and the polar lattice at intermediate electron-phonon coupling strength. Their existence is proposed to screen the carriers and defects to avoid recombination and trapping, thus leading to long carrier lifetimes. ARPES results by one group supported this assumption, reporting a 50% effective mass enhancement over the theoretical effective mass for CsPbBr3 in the orthorhombic structure. The current thesis examines this hypothesis experimentally by photon-energy-dependent ARPES spectra and theoretically by GW band calculations of CsPbBr3 perovskites. The investigation is based on the fact that a polaron contribution in charge transport can become evident by an increase of the effective mass as measured by ARPES over the calculated one without polaron effects. However, my experiments on crystalline CsPbBr3 did not imply a larger effective mass for which one could postulate large polarons. In fact, the effective masses determined from ARPES agree with that of theoretical predictions. The second part of my thesis thoroughly investigates the possibility of spontaneously magnetizing LHPs by introducing Mn2+ ions. Mn doping was reported to cause ferromagnetism in one of the most common LHPs, MAPbI3, mediated by super-exchange. The current work investigates the magnetic properties of a wide concentration range of Mn-doped MAPbI3 and triple-cation films by XAS, XMCD, and SQUID measurements. Based on the XAS line shape and a sum-rule analysis of the XMCD spectra, a pure Mn2+ configuration has been confirmed. Negative Curie temperatures are extracted from fitting the magnetization with a Curie-Weiss law. However, a remanent magnetization, which would be an indication of the absence of ferromagnetism down to 2K. As far as the double exchange is concerned, the element-specific XAS excludes a sufficient amount of Mn3+ as a prerequisite for this mechanism. All the findings show no evidence of significant double exchange or ferromagnetism in Mn-doped LHPs. The magnetic behavior is paramagnetic rather than ferromagnetic. In the dissertation's last chapter, orthorhombic features of CsPbBr3 are revealed by ARPES, including an extra VBM at the Γ-point. The VBM of CsPbBr3 shows a temperature-dependent splitting, which decreases by 190 meV between 38K and 300K and tracks a shift of a saddle point at the cubic M-point. It is possible to reproduce the energy shift using an atomic model with a larger unit cell for room temperature, allowing local inversion symmetry breaking. This indicates the importance of electric dipoles for the inorganic LHPs, which may contribute to their high efficiency by breaking inversion symmetry and a Berry-phase effect.show moreshow less
  • In meiner Dissertation geht es vor allem darum, die vorteilhaften Eigenschaften von LHP ausgehend von ihrer elektronischen Struktur zu beleuchten. Derzeit kursieren zahlreiche Hypothesen, um die außergewöhnlich guten Transporteigenschaften von LHPs zu erklären. Die Suche nach einer Erklärung für die niedrigen strahlungslosen Rekombinationsraten und die langen Ladungsträgerlebensdauern ist von besonderem Interesse für die Forschercommunity der Halogenidperowskite. Der erste Teil dieser Arbeit untersucht die beiden Haupthypothesen, von denen angenommen wird, dass sie eine wichtige Rolle spielen: die Existenz eines riesigen Rashba-Effekts und großer Polaronen. Hier wird hauptsächlich die experimentelle Methode der ARPES angewandt, um ihre Glaubwürdigkeit zu überprüfen. Die erste Hypothese geht davon aus, dass ein riesiger Rashba-Effekt die Rekombinationsverluste der Ladungsträger einschränkt, indem er die Bandlücke leicht indirekt macht. Der Rashba-Effekt basiert auf einer starken Spin-Bahn-Wechselwirkung, die in LHPs, dank derIn meiner Dissertation geht es vor allem darum, die vorteilhaften Eigenschaften von LHP ausgehend von ihrer elektronischen Struktur zu beleuchten. Derzeit kursieren zahlreiche Hypothesen, um die außergewöhnlich guten Transporteigenschaften von LHPs zu erklären. Die Suche nach einer Erklärung für die niedrigen strahlungslosen Rekombinationsraten und die langen Ladungsträgerlebensdauern ist von besonderem Interesse für die Forschercommunity der Halogenidperowskite. Der erste Teil dieser Arbeit untersucht die beiden Haupthypothesen, von denen angenommen wird, dass sie eine wichtige Rolle spielen: die Existenz eines riesigen Rashba-Effekts und großer Polaronen. Hier wird hauptsächlich die experimentelle Methode der ARPES angewandt, um ihre Glaubwürdigkeit zu überprüfen. Die erste Hypothese geht davon aus, dass ein riesiger Rashba-Effekt die Rekombinationsverluste der Ladungsträger einschränkt, indem er die Bandlücke leicht indirekt macht. Der Rashba-Effekt basiert auf einer starken Spin-Bahn-Wechselwirkung, die in LHPs, dank der Präsenz des schweren Elements Pb in ihrer Struktur, potenziell auftreten könnte. Eine frühere experimentelle Arbeit hatte diesen Effekt am VBM eines hybriden LHP als mögliche Erklärung für die langen Lebensdauern der Ladungsträger vorgeschlagen. Meine systematischen ARPES-Studien am hybriden MAPbBr3 sowie die winkel- und spinaufgelösten ARPES-Studien am anorganischen CsPbBr3 widerlegen das Vorhandensein eines riesigen Rashba-Effekts im VBM in der angegebenen Größenordnung. Daher können weder die Spin-Textur noch der indirekte Bandlückencharakter am VBM im Volumen oder an der Oberfläche die hohe Effizienz von LHP erklären. Dieser Effekt ist, falls er existiert, mindestens um einen Faktor hundert kleiner als bisher angenommen. Die zweite Hypothese geht von der Bildung großer Polaronen in der elektronischen Struktur von LHPs aus, welche zu ihrer hohen Defekttoleranz und niedrigen strahlungslosen Rekombination srate beitragen soll. Da die Perowskit Struktur aus negativen und positiven Ionen besteht, sind solche Polaronen wegen der Coulomb-Wechselwirkung zwischen Ladungsträger und Ionengitter bei mittlerer Stärke der Elektron-Phonon-Kopplung zu erwarten. Es wird angenommen, dass sie die Ladungsträger und Defekte abschirmen, was Rekombination und Trapping verhindert und zu langen Ladungsträgerlebensdauern führt. Die ARPES-Ergebnisse einer Gruppe stützen diese Annahme und zeigen, dass die effektive Masse von CsPbBr3 um 50% höher ist als die theoretische effektive Masse für die orthorhombische Phase. In der vorliegenden Arbeit wird diese Hypothese experimentell mit Hilfe von Photonenenergie-abhängigen ARPES-Spektren und theoretisch mit Hilfe von GW-Bandstrukturberechnungen an CsPbBr3-Perowskiten untersucht. Denn der Beitrag von Polaronen zum Ladungstransport lässt sich durch eine Zunahme der mit ARPES gemessenen effektiven-Masse nachweisen. Meine Experimente an kristallinem CsPbBr3 ergaben jedoch keine erhöhte effektive Masse, für die man große Polaronen postulieren könnte. Tatsächlich stimmen die aus ARPES ermittelten effektiven Massen gut mit den theoretischen Vorhersagen überein. Der zweite Teil meiner Dissertation untersucht die Möglichkeit, LHPs durch den Einbau von Mn2+ Ionen spontan zu magnetisieren. Es wurde berichtet, dass die Mn-Dotierung in einem der häufigsten LHPs - \MAPbI3 - Ferromagnetismus durch "Superaustausch" hervorruft. Außerdem berichteten zwei weitere Arbeiten über Ferromagnetismus sogar bei Raumtemperatur, hervorgerufen jedoch durch Doppalaustausch. In der vorliegenden Arbeit werden die magnetischen Eigenschaften eines weiten Konzentrationsbereichs von Mn-dotiertem MAPbI3 und Dreifachkation-Filmen mittels XAS, XMCD und SQUID-Messungen untersucht. Basierend auf der XAS-Linienform und der Summenregelanalyse der XMCD-Spektren wurde eine reine Mn2+ Konfiguration bestätigt. Negative Curie-Temperaturen werden aus einem Fit der Magnetisierung mit dem Curie-Weiss-Gesetz abgeleitet. Eine remanente Magnetisierung, die auf Ferromagnetismus hindeuten würde, wird jedoch bis hinunter zu 2K nicht beobachtet. Was den Doppelaustausch betrifft, so schließt die elementspezifische XAS eine ausreichende Menge an Mn3+ als Voraussetzung für diesen Mechanismus aus. Nach all diesen Erkenntnissen gibt es keinen Hinweis auf einen signifikanten Doppelaustausch oder Ferromagnetismus in Mn-dotierten LHP. Das magnetische Verhalten ist eher paramagnetisch als ferromagnetisch. Im letzten Kapitel der Dissertation werden orthorhombische ARPES-Strukturen bei CsPbBr3 beobachtet, einschließlich eines zusätzlichen VBM am Γ-Punkt. Das VBM von CsPbBr3 zeigt eine temperaturabhängige Aufspaltung, die zwischen 38K und 300 K um 190 meV abnimmt und von einer Verschiebung eines Sattelpunktes am kubischen M-Punkt stammt. Es ist möglich, die Energieverschiebung mit atomaren Model mit größerer Einzeitszelle für Raumtemperatur, eine Brechung der lokalen Inversionssymmetrie zulässt, zu reproduzieren. Dies deutet auf die Bedeutung elektrischer Dipole für anorganische LHP hin, die zu ihrer hohen Effizienz durch Brechung der Inversionssymmetrie und einen Berry-Phasen-Effekt beitragen könnten.show moreshow less
Metadaten
Author details:Maryam SajediORCiDGND
Reviewer(s):Norbert KochORCiDGND, Friedrich ReinertORCiDGND
Supervisor(s):Oliver Rader, Andrei Varykhalov
Publication type:Doctoral Thesis
Language:English
Year of first publication:2023
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/07/03
Release date:2023/10/30
Tag:Bleihalogenid-Perowskite (BHP); Brillouin-Zone (BZ); Oberflächen-Brillouin-Zone (OBZ); Spin-Bahn-Wechselwirkung (SBW); Valenzband (VB); Valenzbandmaximum (VBM)
Brillouin zone (BZ); Spin-orbi coupling (SOC); lead halide perovskites (LHP); surface Brillouin zone (SBZ); valence band (VB); valence band maximum (VBM)
Number of pages:xviii, 149
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
MSC classification:78-XX OPTICS, ELECTROMAGNETIC THEORY (For quantum optics, see 81V80)
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.