• search hit 1 of 3
Back to Result List

Comparisons of lipid molecular and carbon isotopic compositions in two particle-size fractions from surface peat and their implications for lipid preservation

  • Knowledge of the possible impacts of early diagenesis on lipid biomarkers in geologic settings is important for robust applications of lipid proxies for paleoclimate reconstructions. In this study, molecular distributions and carbon isotopic compositions of lipids were compared in two particle-size fractions (<0.3 mm and >0.3 mm) of twelve surface peat samples collected from Dajiuhu peatland, central China. The average chain length (ACL) values of long-chain n-alkanes, n-fatty alcohols, n-fatty acids and n-alkan-2-ones show no significant differences between the finer and coarser fractions. In contrast, the carbon preference index values of long-chain n-alkanes, n-fatty alcohols and n-alkan-2-ones have relatively smaller values in the finer fractions than in the coarser ones. Stanols were also more abundant in the finer fractions. In addition, the delta C-13 values of odd-numbered n-alkanes (C-23-C-33) were generally less negative in the finer fractions. Our results indicate that (1) the finer fractions probably experienced strongerKnowledge of the possible impacts of early diagenesis on lipid biomarkers in geologic settings is important for robust applications of lipid proxies for paleoclimate reconstructions. In this study, molecular distributions and carbon isotopic compositions of lipids were compared in two particle-size fractions (<0.3 mm and >0.3 mm) of twelve surface peat samples collected from Dajiuhu peatland, central China. The average chain length (ACL) values of long-chain n-alkanes, n-fatty alcohols, n-fatty acids and n-alkan-2-ones show no significant differences between the finer and coarser fractions. In contrast, the carbon preference index values of long-chain n-alkanes, n-fatty alcohols and n-alkan-2-ones have relatively smaller values in the finer fractions than in the coarser ones. Stanols were also more abundant in the finer fractions. In addition, the delta C-13 values of odd-numbered n-alkanes (C-23-C-33) were generally less negative in the finer fractions. Our results indicate that (1) the finer fractions probably experienced stronger degradation than the coarser fractions; (2) the less negative delta(CC)-C-13 values of odd-numbered n-alkanes (C-23-C-33) in the finer fractions were largely a result of greater heterotrophic reworking during degradation; (3) ACL values of long-chain n-alkyl lipids (n-alkanes, n-fatty alcohols and n-fatty acids, n-alkan-2-ones) appear to be reliable proxies to trace lipid sources and their associated paleoenvironmental signals in peat deposits.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Xinxin Wang, Xianyu Huang, Dirk SachseORCiDGND, Yu Hu, Jiantao Xue, Philip A. Meyers
DOI:https://doi.org/10.1007/s12665-016-5960-3
ISSN:1866-6280
ISSN:1866-6299
Title of parent work (English):Environmental earth sciences
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Compound-specific carbon isotope; Decomposition; Lipids; Particle-size fractions; Peat
Volume:75
Number of pages:13
First page:375
Last Page:385
Funding institution:National Natural Science Foundation of China [41472308, 41330103]; Programme of Introducing Talents of Discipline to Universities [B08030]; Fundamental Research Funds for the Central Universities [CUG150618]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.