• search hit 1 of 1
Back to Result List

Stress by poor food quality and exposure to humic substances : daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers

  • In freshwater systems, many abiotic and biotic factors determine the natural fluctuation of Daphnia spec. populations: climatic and water quality parameters, quantitative and qualitative food quality and quantity, predation, and humic substances. Many factors/stressors act in concert. In this contribution, we supplied Daphnia magna with two different diets (chlorococcal alga Pseudokirchneriella subcapitata and baker's yeast) fed ad libitum and exposed it to an environmentally realistic concentration of humic substances (HSs). Exposure to HSs caused a transcriptionally controlled stress response with studied genes; cat and hsp60, for the latter partial sequences have been identified. Furthermore, the exposure to HSs reduced the antioxidant capacity. Yet, a much stronger oxidative stress is caused by feeding yeast, which reduced the anti-oxidative capacity to values of approximately 50% of the green algal diet. This reduction is most likely due to the yeast's cell wall to resist digestion rather than to the elemental ratio or deficiencyIn freshwater systems, many abiotic and biotic factors determine the natural fluctuation of Daphnia spec. populations: climatic and water quality parameters, quantitative and qualitative food quality and quantity, predation, and humic substances. Many factors/stressors act in concert. In this contribution, we supplied Daphnia magna with two different diets (chlorococcal alga Pseudokirchneriella subcapitata and baker's yeast) fed ad libitum and exposed it to an environmentally realistic concentration of humic substances (HSs). Exposure to HSs caused a transcriptionally controlled stress response with studied genes; cat and hsp60, for the latter partial sequences have been identified. Furthermore, the exposure to HSs reduced the antioxidant capacity. Yet, a much stronger oxidative stress is caused by feeding yeast, which reduced the anti-oxidative capacity to values of approximately 50% of the green algal diet. This reduction is most likely due to the yeast's cell wall to resist digestion rather than to the elemental ratio or deficiency in long-chained unsaturated fatty acids, because both diets were deficient in fatty acids with back bones of more than 20 C-atoms. We assume that the biochemical machinery in the gut continuously activated oxygen to cleave the yeast's cell wall and, hence, reduced the antioxidative capacity of the animals. Neither the analyzed oxidant, H2O2, nor the antioxidants, total apparent ascorbic acid nor free proline, reflected the oxidative stress situations properly. In addition to the stress, HS exposure extended the mean lifespan of algae-fed D. magna, but at the expense of offspring numbers; so did also the pure yeast diet as compared to the algae diet. The first lifespan extension can be explained by the potential of HSs to block the pathway via the insulin-like growth factor 1 (IGF), whereas the second matches the, in aging papers, well described, but mechanistically poorly understood caloric restriction. Yeast-fed animals, exposed to HSs changed the energy allocation by reducing life span, but increasing offspring numbers. With the lifespan and offspring numbers, ecologically relevant parameters are differently affected by the simultaneous action of two environmentally relevant stressors.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christian E. W. Steinberg, Nadia Ouerghemmi, Steffen Herrmann, Rihab Bouchnak, Maxim A. Timofeyev, Ralph Menzel
URL:http://www.springerlink.com/content/100271
DOI:https://doi.org/10.1007/s10750-010-0334-4
ISSN:0018-8158
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Hydrobiologia. - ISSN 0018-8158. - 652 (2010), 1, S. 223 - 236
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.