• search hit 1 of 1
Back to Result List

Timing of crust formation and recycling in accretionary orogens : insights learned from the western margin of South America

  • Accretionary orogens are considered major sites of formation of juvenile continental crust. In the central and southern Andes this is contradicted by two observations: siliciclastic fills of Paleozoic basins in the central Andean segment of the accretionary Terra Australis Orogen consist almost exclusively of shales and mature sandstones; and magmatic rocks connected to the Famatinian (Ordovician) and Late Paleozoic magmatic arcs are predominantly felsic and characterized by significant crustal contamination and strongly unradiogenic Nd isotope compositions. Evidence of juvenile crustal additions is scarce. We present laser ablation (LA)-ICPMS U-Pb ages and LA-MC-ICPMS Hf isotope data of detrital zircons from seven Devonian to Permian turbidite sandstones incorporated into a Late Paleozoic accretionary wedge at the western margin of Gondwana in northern Chile. The combination with Nd whole-rock isotope data permits us to trace the evolution of the South American continental crust through several Proterozoic and Paleozoic orogenicAccretionary orogens are considered major sites of formation of juvenile continental crust. In the central and southern Andes this is contradicted by two observations: siliciclastic fills of Paleozoic basins in the central Andean segment of the accretionary Terra Australis Orogen consist almost exclusively of shales and mature sandstones; and magmatic rocks connected to the Famatinian (Ordovician) and Late Paleozoic magmatic arcs are predominantly felsic and characterized by significant crustal contamination and strongly unradiogenic Nd isotope compositions. Evidence of juvenile crustal additions is scarce. We present laser ablation (LA)-ICPMS U-Pb ages and LA-MC-ICPMS Hf isotope data of detrital zircons from seven Devonian to Permian turbidite sandstones incorporated into a Late Paleozoic accretionary wedge at the western margin of Gondwana in northern Chile. The combination with Nd whole-rock isotope data permits us to trace the evolution of the South American continental crust through several Proterozoic and Paleozoic orogenic cycles. The analyzed detrital zircon spectra reflect all Proterozoic orogenic cycles representing the step-wise evolution of the accretionary SW Amazonia Orogenic System between 2.0 and 0.9 Ga, followed by the Terra Australis Orogen between 0.9 and 0.25 Ga. The zircon populations are characterized by two prominent maxima reflecting input from Sunsas (Grenville) age magmatic rocks (1.2-0.9 Ga) and from the Ordovician to Silurian Famatinian magmatic arc (0.52-0.42 Ga). Grains of Devonian age are scarce or absent from the analyzed zircon populations. The Hf isotopic compositions of selected dated zircons at the time of their crystallization (epsilon Hf-(T); T = 3.3-0.25 Ga) vary between -18 and +11. All sandstones have a significant juvenile component; between 20 and 50% of the zircons from each sedimentary rock have positive epsilon Hf-(T) and can be considered juvenile. The majority of the juvenile grains have Hf-depleted mantle model ages (Hf T-DM) between 1.55 and 0.8 Ga. the time of the Rondonia-San Ignacio and Sunsas orogenic events on the Amazonia craton. The corresponding whole-rock epsilon Nd-(T) values fot these same rocks are between -8 and -3 indicating a mixture of older evolved and juvenile sources. Nd-depleted mantle model ages (Nd T-DM*) are between 1.5 and 1.2 Ga and coincide broadly with the zircon Hf model ages. Our data indicate that the Paleo- and Mesoproterozoic SW Amazonia Orogenic System, and the subsequent Neoproterozoic and Paleozoic Terra Australis Orogen in the region of the central and southern Andes, developed following two markedly different patterns of accretionary orogenic crustal evolution. The SW Amazonia Orogenic System developed by southwestward growth over approximately 1.1 Ga through a combination of accretion of juvenile material and crustal recycling typical of the extensional or retreating mode of accretionary orogens. In contrast, the central Andean segment of the Terra Australis Orogen evolved from 0.9 to 0.25 Ga in the compressional or advancing mode in a relatively fixed position without the accretion of oceanic crustal units or large scale input of juvenile material to the orogenic crust. Here, recycling mainly of Mesoproterozoic continental crust has been the dominant process of crustal evolution. (C) 2009 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Heinrich Bahlburg, Jeffrey D. Vervoort, S. Andrew du Frane, Barbara Bock, Carita Augustsson, Cornelia Reimann
URL:http://www.sciencedirect.com/science/journal/00128252
DOI:https://doi.org/10.1016/j.earscirev.2009.10.006
ISSN:0012-8252
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Earth-science reviews. - ISSN 0012-8252. - 97 (2009), 1-4, S. 215 - 241
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.