• Treffer 15 von 817
Zurück zur Trefferliste

A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands

  • The closed-chamber method is the most common approach to determine CH4 fluxes in peatlands. The concentration change in the chamber is monitored over time, and the flux is usually calculated by the slope of a linear regression function. Theoretically, the gas exchange cannot be constant over time but has to decrease, when the concentration gradient between chamber headspace and soil air decreases. In this study, we test whether we can detect this non- linearity in the concentration change during the chamber closure with six air samples. We expect generally a low concentration gradient on dry sites (hummocks) and thus the occurrence of exponential concentration changes in the chamber due to a quick equilibrium of gas concentrations between peat and chamber headspace. On wet (flarks) and sedge- covered sites (lawns), we expect a high gradient and near-linear concentration changes in the chamber. To evaluate these model assumptions, we calculate both linear and exponential regressions for a test data set (n = 597) from a Finnish mire. WeThe closed-chamber method is the most common approach to determine CH4 fluxes in peatlands. The concentration change in the chamber is monitored over time, and the flux is usually calculated by the slope of a linear regression function. Theoretically, the gas exchange cannot be constant over time but has to decrease, when the concentration gradient between chamber headspace and soil air decreases. In this study, we test whether we can detect this non- linearity in the concentration change during the chamber closure with six air samples. We expect generally a low concentration gradient on dry sites (hummocks) and thus the occurrence of exponential concentration changes in the chamber due to a quick equilibrium of gas concentrations between peat and chamber headspace. On wet (flarks) and sedge- covered sites (lawns), we expect a high gradient and near-linear concentration changes in the chamber. To evaluate these model assumptions, we calculate both linear and exponential regressions for a test data set (n = 597) from a Finnish mire. We use the Akaike Information Criterion with small sample second order bias correction to select the best-fitted model. 13.6%, 19.2% and 9.8% of measurements on hummocks, lawns and flarks, respectively, were best fitted with an exponential regression model. A flux estimation derived from the slope of the exponential function at the beginning of the chamber closure can be significantly higher than using the slope of the linear regression function. Non-linear concentration-overtime curves occurred mostly during periods of changing water table. This could be due to either natural processes or chamber artefacts, e.g. initial pressure fluctuations during chamber deployment. To be able to exclude either natural processes or artefacts as cause of non-linearity, further information, e.g. CH4 concentration profile measurements in the peat, would be needed. If this is not available, the range of uncertainty can be substantial. We suggest to use the range between the slopes of the exponential regression at the beginning and at the end of the closure time as an estimate of the overall uncertainty.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Inke Forbrich, Lars Kutzbach, Annabell Hormann, Martin Wilmking
URL:http://www.sciencedirect.com/science/journal/00380717
DOI:https://doi.org/10.1016/j.soilbio.2009.12.004
ISSN:0038-0717
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2010
Erscheinungsjahr:2010
Datum der Freischaltung:25.03.2017
Quelle:Soil biology & biochemistry. - ISSN 0038-0717. - 42 (2010), 3, S. 507 - 515
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer Review:Referiert
Name der Einrichtung zum Zeitpunkt der Publikation:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.