• Treffer 1 von 2
Zurück zur Trefferliste

Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii

  • We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42 degrees C for 24 h and back to 25 degrees C for >= 8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks forWe applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42 degrees C for 24 h and back to 25 degrees C for >= 8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Dorothea Hemme, Daniel Veyel, Timo Muehlhaus, Frederik Sommer, Jessica Jueppner, Ann-Katrin Unger, Michael Sandmann, Ines Fehrle, Stephanie Schoenfelder, Martin SteupORCiDGND, Stefan Geimer, Joachim KopkaORCiDGND, Patrick GiavaliscoORCiD, Michael Schroda
DOI:https://doi.org/10.1105/tpc.114.130997
ISSN:1040-4651
ISSN:1532-298X
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25415976
Titel des übergeordneten Werks (Englisch):The plant cell
Verlag:American Society of Plant Physiologists
Verlagsort:Rockville
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2014
Erscheinungsjahr:2014
Datum der Freischaltung:27.03.2017
Band:26
Ausgabe:11
Seitenanzahl:28
Erste Seite:4270
Letzte Seite:4297
Fördernde Institution:Max Planck Society; Federal Ministry of Education and Research (BMBF), Germany [FKZ 0313924]; Deutsche Forschungsgemeinschaft [Schr 617/6-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.