• Treffer 1 von 7
Zurück zur Trefferliste

How to quantify the efficiency potential of neat perovskite films

  • Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskitePerovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • zmnr1434.pdfeng
    (4098KB)

    SHA-512162379413357e5e0ef61a393cc4bfdab6f2a215e05dcb97c9134d34d22830767de62e6fd4957155795d6beaa6c552ee64bb99bf415f4745ad116e8ec8f854132

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Martin StolterfohtORCiD, Max GrischekORCiD, Pietro CaprioglioORCiDGND, Christian Michael WolffORCiDGND, Emilio Gutierrez-Partida, Francisco Peña-CamargoORCiD, Daniel RothhardtORCiD, Shanshan Zhang, Meysam Raoufi, Jakob Wolansky, Mojtaba Abdi-Jalebi, Samuel D. Stranks, Steve Albrecht, Thomas KirchartzORCiDGND, Dieter NeherORCiDGND
URN:urn:nbn:de:kobv:517-opus4-516622
DOI:https://doi.org/10.25932/publishup-51662
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Untertitel (Englisch):Perovskite semiconductors with an implied efficiency exceeding 28%
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1434)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:12.03.2020
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:11.03.2024
Freies Schlagwort / Tag:non-radiative interface recombination; perovskite solar cells; photoluminescence
Ausgabe:17
Aufsatznummer:2000080
Seitenanzahl:12
Quelle:Adv. Mater. 2020, 32, 2000080. https://doi.org/10.1002/adma.202000080
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik / 660 Chemische Verfahrenstechnik
Peer Review:Referiert
Publikationsweg:Open Access / Green Open-Access
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Externe Anmerkung:Bibliographieeintrag der Originalveröffentlichung/Quelle
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.