• search hit 84 of 234
Back to Result List

Reconstructing differential equation from a time series

  • This paper treats a problem of reconstructing ordinary differential equation from a single analytic time series with observational noise. We suppose that the noise is Gaussian (white). The investigation is presented in terms of classical theory of dynamical systems and modern time series analysis. We restrict our considerations on time series obtained as a numerical analytic solution of autonomous ordinary differential equation, solved with respect to the highest derivative and with polynomial right-hand side. In case of an approximate numerical solution with a rather small error, we propose a geometrical basis and a mathematical algorithm to reconstruct a low-order and low-power polynomial differential equation. To reduce the noise the given time series is smoothed at every point by moving polynomial averages using the least-squares method. Then a specific form of the least-squares method is applied to reconstruct the polynomial right-hand side of the unknown equation. We demonstrate for monotonous, periodic and chaotic solutionsThis paper treats a problem of reconstructing ordinary differential equation from a single analytic time series with observational noise. We suppose that the noise is Gaussian (white). The investigation is presented in terms of classical theory of dynamical systems and modern time series analysis. We restrict our considerations on time series obtained as a numerical analytic solution of autonomous ordinary differential equation, solved with respect to the highest derivative and with polynomial right-hand side. In case of an approximate numerical solution with a rather small error, we propose a geometrical basis and a mathematical algorithm to reconstruct a low-order and low-power polynomial differential equation. To reduce the noise the given time series is smoothed at every point by moving polynomial averages using the least-squares method. Then a specific form of the least-squares method is applied to reconstruct the polynomial right-hand side of the unknown equation. We demonstrate for monotonous, periodic and chaotic solutions that this technique is very efficientshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Valko Petrov, Jürgen KurthsORCiDGND, Nikola Georgiev
ISSN:0218-1274
Publication type:Article
Language:English
Year of first publication:2003
Publication year:2003
Release date:2017/03/24
Source:International Journal of Bifurcation and Chaos. - ISSN 0218-1274. - 13 (2003), 11, S. 3307 - 3323
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.