• search hit 82 of 2700
Back to Result List

Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis

  • The marine sedimentary record contains unique information about the history of erosion, uplift and climate of the adjacent continent. Inverting this record has been the purpose of many numerical studies. However, limited attention has been given to linking continental erosion to marine sediment transport and deposition in large-scale surface process evolution models. Here we present a new numerical method for marine sediment transport and deposition that is directly coupled to a landscape evolution algorithm solving for the continental fluvial and hillslope erosion equations using implicit and O(N) algorithms. The new method takes into account the sorting of grain sizes (e.g., silt and sand) in the marine domain using a non-linear multiple grain-size diffusion equation and assumes that the sediment flux exported from the continental domain is proportional to the bathymetric slope. Specific transport coefficients and compaction factors are assumed for the two different grain sizes to simulate the stratigraphic architecture. TheThe marine sedimentary record contains unique information about the history of erosion, uplift and climate of the adjacent continent. Inverting this record has been the purpose of many numerical studies. However, limited attention has been given to linking continental erosion to marine sediment transport and deposition in large-scale surface process evolution models. Here we present a new numerical method for marine sediment transport and deposition that is directly coupled to a landscape evolution algorithm solving for the continental fluvial and hillslope erosion equations using implicit and O(N) algorithms. The new method takes into account the sorting of grain sizes (e.g., silt and sand) in the marine domain using a non-linear multiple grain-size diffusion equation and assumes that the sediment flux exported from the continental domain is proportional to the bathymetric slope. Specific transport coefficients and compaction factors are assumed for the two different grain sizes to simulate the stratigraphic architecture. The resulting set of equations is solved using an efficient (O(N) and implicit) algorithm. It can thus be used to invert stratigraphic geometries using a Bayesian approach that requires a large number of simulations. This new method is used to invert the sedimentary geometry of a natural example, the Ogooue Delta (Gabon), over the last similar to 5 Myr. The objective is to unravel the set of erosional histories of the adjacent continental domain compatible with the observed geometry of the offshore delta. For this, we use a Bayesian inversion scheme in which the misfit function is constructed by comparing four geometrical parameters between the natural and the simulated delta: the volume of sediments stored in the delta, the surface slope, the initial and the final shelf lengths. We find that the best-fit values of the transport coefficients for silt in the marine domain are in the range of 300 - 500 m(2)/yr, in agreement with previous studies on offshore diffusion. We also show that, in order to fit the sedimentary geometry, erosion rate on the continental domain must have increased by a factor of 6 to 8 since 5.3 Ma. (C) 2019 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Xiaoping YuanORCiDGND, Jean BraunORCiDGND, Laure GueritORCiD, Brendan SimonORCiD, Benoît Bovy, Delphine RoubyORCiD, Cécile RobinGND, R. Jiao
DOI:https://doi.org/10.1016/j.epsl.2019.115728
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/27
Tag:efficient method; inverse analysis; river erosion; sediment-transport model; the Ogooue Delta
Volume:524
Number of pages:15
Funding institution:Total
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.