• search hit 69 of 71
Back to Result List

Stratification-dependent mixing may increase sensitivity of a wind-driven Atlantic overturning to surface freshwater flux

  • Stratification-dependent mixing is employed in a coupled climate model of intermediate complexity with a 3- dimensional ocean component. Oceanic vertical diffusivity is calculated as kappa similar to N-alpha, where N is the local buoyancy frequency. The sensitivity of the Atlantic meridional overturning circulation (AMOC) to freshwater forcing is tested for exponents 0 <= a <= 2 by first slowly increasing, then decreasing the freshwater forcing over the North Atlantic, keeping the model close to equilibrium. The surface fresh anomaly imposed between 20 degrees N and 50 degrees N in the Atlantic reaches the deep ocean by vertical diffusion, and by AMOC advection via the northern convection sites. The fresh anomaly leads to enhanced stratification and thereby reduces vertical mixing stronger for higher values of a. Consequently, the freshwater anomaly reaches the northern deep water formation regions less diluted, and reduces the AMOC more strongly compared to lower values of a. Our findings indicate that modeled changes in the AMOCStratification-dependent mixing is employed in a coupled climate model of intermediate complexity with a 3- dimensional ocean component. Oceanic vertical diffusivity is calculated as kappa similar to N-alpha, where N is the local buoyancy frequency. The sensitivity of the Atlantic meridional overturning circulation (AMOC) to freshwater forcing is tested for exponents 0 <= a <= 2 by first slowly increasing, then decreasing the freshwater forcing over the North Atlantic, keeping the model close to equilibrium. The surface fresh anomaly imposed between 20 degrees N and 50 degrees N in the Atlantic reaches the deep ocean by vertical diffusion, and by AMOC advection via the northern convection sites. The fresh anomaly leads to enhanced stratification and thereby reduces vertical mixing stronger for higher values of a. Consequently, the freshwater anomaly reaches the northern deep water formation regions less diluted, and reduces the AMOC more strongly compared to lower values of a. Our findings indicate that modeled changes in the AMOC depend critically on the details of the mixing parameterization employed in the model.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Benjamin Marzeion, Anders LevermannORCiDGND
URL:http://www.agu.org/journals/gl/
DOI:https://doi.org/10.1029/2009gl039947
ISSN:0094-8276
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Geophysical research letters. - ISSN 0094-8276. - 36 (2009), Art. L20602
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.