The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 52 of 2517
Back to Result List

NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato

  • Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell‐damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus‐induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought‐responsive genes. In contrast, overexpression ofWater deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell‐damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus‐induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought‐responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress‐related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.show moreshow less

Download full text files

  • SHA-1: 8e31e2247e0a5286dbca41c3e77a55405e546c0d

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Venkatesh P. ThirumalaikumarORCiDGND, Vikas Devkar, Nikolay Mehterov, Shawkat Ali, Rengin Ozgur, Ismail Turkan, Bernd Müller-RöberORCiDGND, Salma BalazadehORCiDGND
URN:urn:nbn:de:kobv:517-opus4-423908
DOI:https://doi.org/10.25932/publishup-42390
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (568)
Publication type:Postprint
Language:English
Date of first publication:2019/02/04
Publication year:2017
Publishing institution:Universität Potsdam
Release date:2019/02/04
Tag:DELLA; drought; reactive oxygen species; tomato; transcription factor
Arabidopsis
Issue:568
Number of pages:13
Source:Plant Biotechnology Journal 16 (2018) 2, S. 354–366 DOI: 10.1111/pbi.12776
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
Peer review:Referiert
Publishing method:Open Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.