The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 48 of 2166
Back to Result List

High-latitude coupling processes between thermospheric circulation and solar wind driven magnetospheric currents and plasma convection

Kopplungsprozesse zwischen der thermosphärischen Zirkulation in hohen Breiten und den vom Sonnenwind getriebenen magnetosphärischen Strömen und der Plasmakonvektion

  • The high-latitudinal thermospheric processes driven by the solar wind and Interplanetary Magnetic Field (IMF) interaction with the Earth magnetosphere are highly variable parts of the complex dynamic plasma environment, which represent the coupled Magnetosphere – Ionosphere – Thermosphere (MIT) system. The solar wind and IMF interactions transfer energy to the MIT system via reconnection processes at the magnetopause. The Field Aligned Currents (FACs) constitute the energetic links between the magnetosphere and the Earth ionosphere. The MIT system depends on the highly variable solar wind conditions, in particular on changes of the strength and orientation of the IMF. In my thesis, I perform an investigation on the physical background of the complex MIT system using the global physical - numerical, three-dimensional, time-dependent and self-consistent Upper Atmosphere Model (UAM). This model describes the thermosphere, ionosphere, plasmasphere and inner magnetosphere as well as the electrodynamics of the coupled MIT system for theThe high-latitudinal thermospheric processes driven by the solar wind and Interplanetary Magnetic Field (IMF) interaction with the Earth magnetosphere are highly variable parts of the complex dynamic plasma environment, which represent the coupled Magnetosphere – Ionosphere – Thermosphere (MIT) system. The solar wind and IMF interactions transfer energy to the MIT system via reconnection processes at the magnetopause. The Field Aligned Currents (FACs) constitute the energetic links between the magnetosphere and the Earth ionosphere. The MIT system depends on the highly variable solar wind conditions, in particular on changes of the strength and orientation of the IMF. In my thesis, I perform an investigation on the physical background of the complex MIT system using the global physical - numerical, three-dimensional, time-dependent and self-consistent Upper Atmosphere Model (UAM). This model describes the thermosphere, ionosphere, plasmasphere and inner magnetosphere as well as the electrodynamics of the coupled MIT system for the altitudinal range from 80 (60) km up to the 15 Earth radii. In the present study, I developed and investigated several variants of the high-latitudinal electrodynamic coupling by including the IMF dependence of FACs into the UAM model. For testing, the various variants were applied to simulations of the coupled MIT system for different seasons, geomagnetic activities, various solar wind and IMF conditions. Additionally, these variants of the theoretical model with the IMF dependence were compared with global empirical models. The modelling results for the most important thermospheric parameters like neutral wind and mass density were compared with satellite measurements. The variants of the UAM model with IMF dependence show a good agreement with the satellite observations. In comparison with the empirical models, the improved variants of the UAM model reproduce a more realistic meso-scale structures and dynamics of the coupled MIT system than the empirical models, in particular at high latitudes. The new configurations of the UAM model with IMF dependence contribute to the improvement of space weather prediction.show moreshow less
  • Die thermosphärischen Prozesse in hohen Breiten, die durch die Wechselwirkung des Sonnenwinds und des Interplanetaren Magnetfeldes (IMF) mit der Erdmagnetosphäre getrieben werden, stellen sich als stark veränderliches Geschehen in der komplexen dynamischen Plasmaumgebung der Erde dar, die das gekoppelte System der Magnetosphäre, Ionosphäre und Thermosphäre (MIT) umfaßt. Die Einflüsse des Sonnenwindes und des IMF zeigen sich als Energieübertragung in das MIT System mittels Rekonnektionsprozessen an der Magnetopause. Feldliniengerichtete Ströme (FACs) repräsentieren die energetische Kopplung zwischen der Magnetosphäre und der Ionosphäre der Erde. Das MIT System wird bestimmt durch die stark veränderlichen Sonnenwindbedingungen, insbesondere von der Stärke und Richtung des IMF. In meiner Promotionsschrift untersuche ich die physikalischen Bedingungen des komplexen MIT System mit Hilfe eines globalen physikalisch-numerischen, dreidimensionalen, zeitabhängigen und selbstkonsistenten Modells, dem Upper Atmosphere Model (UAM). Das UAMDie thermosphärischen Prozesse in hohen Breiten, die durch die Wechselwirkung des Sonnenwinds und des Interplanetaren Magnetfeldes (IMF) mit der Erdmagnetosphäre getrieben werden, stellen sich als stark veränderliches Geschehen in der komplexen dynamischen Plasmaumgebung der Erde dar, die das gekoppelte System der Magnetosphäre, Ionosphäre und Thermosphäre (MIT) umfaßt. Die Einflüsse des Sonnenwindes und des IMF zeigen sich als Energieübertragung in das MIT System mittels Rekonnektionsprozessen an der Magnetopause. Feldliniengerichtete Ströme (FACs) repräsentieren die energetische Kopplung zwischen der Magnetosphäre und der Ionosphäre der Erde. Das MIT System wird bestimmt durch die stark veränderlichen Sonnenwindbedingungen, insbesondere von der Stärke und Richtung des IMF. In meiner Promotionsschrift untersuche ich die physikalischen Bedingungen des komplexen MIT System mit Hilfe eines globalen physikalisch-numerischen, dreidimensionalen, zeitabhängigen und selbstkonsistenten Modells, dem Upper Atmosphere Model (UAM). Das UAM beschreibt das Verhalten der Thermosphäre, Ionosphäre, Plasmasphäre und der inneren Magnetosphäre in einem Höhenbereich zwischen 80 (60) km und 15 Erdradien sowie die elektrodynamische Verkopplung des gesamten MIT Systems. In der vorliegenden Arbeit habe ich mehrere Varianten der elektrodynamischen Kopplung in hohen Breiten entwickelt und analysiert, die die FACs innerhalb des UAM in ihrer Abhängigkeit vom IMF darstellen. Für Testzwecke wurden diese Varianten auf eine Reihe von numerischen Simulationen des gekoppelten MIT Systems unter verschiedenen Bedingungen hinsichtlich Jahreszeit, geomagnetischer Aktivität, Sonnenwind- und IMF-Parametern angewandt. Darüberhinaus wurden diese Varianten des IMF-abhängigen theoretischen Modells entsprechenden globalen empirischen Modellen gegenübergestellt. Modellergebnisse wurden außerdem mit einigen wichtigen von Satelliten gemessenen Thermosphärenparametern, wie dem Neutralwind und der Massendichte verglichen. Die UAM Modelvarianten mit IMF-Abhängigkeit zeigen eine gute Übereinstimmung mit den Satellitenbeobachtungen. Im Vergleich mit empirischen Modellaussagen geben die UAM Modellvarianten ein genaueres Bild der mesoskaligen Strukturen und der Dynamik des gekoppelten MIT Systems wieder, insbesondere für die hohen Breiten. Die neuen UAM Konfigurationen mit IMF-Abhängigkeit tragen damit zu verbesserten Möglichkeiten in der Weltraumwettervorhersage bei.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Boris E. Prokhorov
URN:urn:nbn:de:kobv:517-opus4-92353
Supervisor(s):Matthias Holschneider
Publication type:Doctoral Thesis
Language:English
Publication year:2015
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2016/04/12
Release date:2016/06/28
Tag:Einfluß des Sonnenwindes und des interplanetaren magnetischen Feldes; Kopplung zwischen Magnetosphäre, Ionosphäre und Thermosphäre; Thermosphäre hoher Breiten; Upper Atmosphere Model (UAM); feldlinengerichtete Ströme
field aligned currents; high-latitudinal thermosphere; magnetosphere-ionosphere-thermosphere coupling; solar wind and interplanetary magnetic field influence; upper atmosphere model
Number of pages:117
RVK - Regensburg classification:UT 1080, UT 5250
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.