• search hit 2 of 16
Back to Result List

High-resolution spectroscopy of an erupting minifilament and its impact on the nearby chromosphere

  • We study the evolution of a minifilament eruption in a quiet region at the center of the solar disk and its impact on the ambient atmosphere. We used high spectral resolution imaging spectroscopy in H alpha acquired by the echelle spectrograph of the Vacuum Tower Telescope, Tenerife, Spain; photospheric magnetic field observations from the Helioseismic Magnetic Imager; and UV/EUV imaging from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. The H alpha line profiles were noise-stripped using principal component analysis and then inverted to produce physical and cloud model parameter maps. The minifilament formed between small-scale, opposite-polarity magnetic features through a series of small reconnection events, and it erupted within an hour after its appearance in H alpha. Its development and eruption exhibited similarities to large-scale erupting filaments, indicating the action of common mechanisms. Its eruption took place in two phases, namely, a slow rise and a fast expansion, and it produced a coronalWe study the evolution of a minifilament eruption in a quiet region at the center of the solar disk and its impact on the ambient atmosphere. We used high spectral resolution imaging spectroscopy in H alpha acquired by the echelle spectrograph of the Vacuum Tower Telescope, Tenerife, Spain; photospheric magnetic field observations from the Helioseismic Magnetic Imager; and UV/EUV imaging from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. The H alpha line profiles were noise-stripped using principal component analysis and then inverted to produce physical and cloud model parameter maps. The minifilament formed between small-scale, opposite-polarity magnetic features through a series of small reconnection events, and it erupted within an hour after its appearance in H alpha. Its development and eruption exhibited similarities to large-scale erupting filaments, indicating the action of common mechanisms. Its eruption took place in two phases, namely, a slow rise and a fast expansion, and it produced a coronal dimming, before the minifilament disappeared. During its eruption, we detected a complicated velocity pattern, indicative of a twisted, thread-like structure. Part of its material returned to the chromosphere, producing observable effects on nearby low-lying magnetic structures. Cloud model analysis showed that the minifilament was initially similar to other chromospheric fine structures, in terms of optical depth, source function, and Doppler width, but it resembled a large-scale filament on its course to eruption. High spectral resolution observations of the chromosphere can provide a wealth of information regarding the dynamics and properties of minifilaments and their interactions with the surrounding atmosphere.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ioannis KontogiannisORCiD, Ekaterina Ivanova DinevaORCiDGND, Andrea DierckeORCiDGND, Meetu VermaORCiDGND, Christoph KuckeinORCiDGND, Horst BalthasarORCiD, Carsten DenkerORCiDGND
DOI:https://doi.org/10.3847/1538-4357/aba117
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:Institute of Physics Publ.
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2020/08/03
Publication year:2020
Release date:2023/04/17
Tag:active solar; active solar chromosphere; corona; high resolution spectroscopy; solar chromosphere; solar filament eruptions; the sun
Volume:898
Issue:2
Article number:144
Number of pages:12
Funding institution:Deutsche Forschungsgemeinschaft (DFG) German Research Foundation (DFG); [DE.787/5-1]; German Academic Exchange Service (DAAD)Deutscher; Akademischer Austausch Dienst (DAAD); European CommissionEuropean; CommissionEuropean Commission Joint Research Centre [824064, 824135]; DFGGerman Research Foundation (DFG)European Commission [VE.1112/1-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.