• search hit 2 of 2
Back to Result List

Modification of the formation of high-mach number electrostatic shock-like structures by the ion acoustic instability

  • The formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one-and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolves into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shockThe formation of unmagnetized electrostatic shock-like structures with a high Mach number is examined with one-and two-dimensional particle-in-cell (PIC) simulations. The structures are generated through the collision of two identical plasma clouds, which consist of equally hot electrons and ions with a mass ratio of 250. The Mach number of the collision speed with respect to the initial ion acoustic speed of the plasma is set to 4.6. This high Mach number delays the formation of such structures by tens of inverse ion plasma frequencies. A pair of stable shock-like structures is observed after this time in the 1D simulation, which gradually evolves into electrostatic shocks. The ion acoustic instability, which can develop in the 2D simulation but not in the 1D one, competes with the nonlinear process that gives rise to these structures. The oblique ion acoustic waves fragment their electric field. The transition layer, across which the bulk of the ions change their speed, widens and their speed change is reduced. Double layer-shock hybrid structures develop.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:M. E. Dieckmann, G. Sarri, D. Doria, Martin PohlORCiDGND, M. Borghesi
DOI:https://doi.org/10.1063/1.4825339
ISSN:1070-664X
ISSN:1089-7674
Title of parent work (English):Physics of plasmas
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:20
Issue:10
Number of pages:12
Funding institution:Vetenskapsradet; Deutsche Forschungsgemeinschaft (DFG) [PO 1508/1-1]; High Performance Computer Centre North (HPC2N) in Umea
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.