The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 15 of 1884
Back to Result List

Regional moisture change over India during the past millennium: A comparison of multi-proxy reconstructions and climate model simulations

  • The Indian Monsoon Variability during the past Millennium has been simulated with the ECHAM5 model in two different time slices: Medieval Climate Anomaly and the Little Ice Age. The simulations are compared with new centennial-resolving paleo-reconstructions inferred from various well-dated multi-proxies from two core regions, the Himalaya and Central India. A qualitative moisture index is derived from the proxies and compared with simulated moisture anomalies. The reconstructed paleo-hydrological changes between the Little Ice Age and the Medieval Climate Anomaly depict a dipole pattern between Himalaya and Central India, which is also captured by the model. In the Medieval Climate Anomaly the model exhibits stronger (weaker) dipole signals during summer (winter) compared to Little Ice Age. In summer (winter) months of "Medieval Climate Anomaly minus Little Ice Age" the model simulates wetter conditions over eastern (western and central) Himalaya. Over Central India, a simulated weakening of Indian Summer Monsoon during warmerThe Indian Monsoon Variability during the past Millennium has been simulated with the ECHAM5 model in two different time slices: Medieval Climate Anomaly and the Little Ice Age. The simulations are compared with new centennial-resolving paleo-reconstructions inferred from various well-dated multi-proxies from two core regions, the Himalaya and Central India. A qualitative moisture index is derived from the proxies and compared with simulated moisture anomalies. The reconstructed paleo-hydrological changes between the Little Ice Age and the Medieval Climate Anomaly depict a dipole pattern between Himalaya and Central India, which is also captured by the model. In the Medieval Climate Anomaly the model exhibits stronger (weaker) dipole signals during summer (winter) compared to Little Ice Age. In summer (winter) months of "Medieval Climate Anomaly minus Little Ice Age" the model simulates wetter conditions over eastern (western and central) Himalaya. Over Central India, a simulated weakening of Indian Summer Monsoon during warmer climate is coincident with reconstructed drying signal in the Lonar Lake record. Based on the model simulations, we can differentiate three physical mechanisms which can lead to the moisture anomalies: (i) the western and central Himalaya are influenced by extra-tropical Westerlies during winter, (ii) the eastern Himalaya is affected by summer variations of temperature gradient between Bay of Bengal and Indian subcontinent and by a zonal band of intensified Indian-East Asian monsoon link north of 25 degrees N, and (iii) Central India is dominated by summer sea surface temperature anomalies in the northern Arabian Sea which have an effect on the large-scale advection of moist air masses. The temperatures in the Arabian Sea are linked to the Ind Pacific Warm Pool, which modulates the Indian monsoon strength. (C) 2014 The Authors. Published by Elsevier B.V.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Stefan Polanski, Bijan Fallah, Daniel J. Befort, Sushma PrasadORCiD, Ulrich Cubasch
DOI:https://doi.org/10.1016/j.gloplacha.2014.08.016
ISSN:0921-8181
ISSN:1872-6364
Title of parent work (English):Global and planetary change
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Little Ice Age; Lonar Crater Lake; Medieval Climate Anomaly; atmosphere-only climate model simulations; moisture variations in India; multi-proxy reconstructions
Volume:122
Number of pages:10
First page:176
Last Page:185
Funding institution:DFG "HIMPAC" [FOR 1380]; German Federal Ministry of Education and Research (BMBF) research project "CADY", joint research program "CAME - Central Asia: Monsoon Dynamics and Geo-Ecosystems"
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.