The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 81 of 82
Back to Result List

Polyelectrolyte adsorption onto oppositely charged interfaces image-charge repulsion and surface curvature

  • We analyze theoretically the influence of low-dielectric boundaries on the adsorption of flexible polyelectrolytes onto planar and spherical oppositely charged surfaces in electrolyte solutions. We rationalize to what extent polymer chains are depleted from adsorbing interfaces by repulsive image forces. We employ the WKB (Wentzel-Kramers-Brillouin) quantum mechanical method for the Green function of the Edwards equation to determine the adsorption equilibrium. Scaling relations are determined for the critical adsorption strength required to initiate polymer adsorption onto these low-dielectric supports. Image-force repulsion shifts the equilibrium toward the desorbed state, demanding larger surface charge densities and polyelectrolyte linear charge densities for the adsorption to take place. The effect is particularly pronounced for a planar interface in a low-salt regime, where a dramatic change in the scaling behavior for the adsorption-desorption transition is predicted. For the adsorbed state, polymers with higher chargeWe analyze theoretically the influence of low-dielectric boundaries on the adsorption of flexible polyelectrolytes onto planar and spherical oppositely charged surfaces in electrolyte solutions. We rationalize to what extent polymer chains are depleted from adsorbing interfaces by repulsive image forces. We employ the WKB (Wentzel-Kramers-Brillouin) quantum mechanical method for the Green function of the Edwards equation to determine the adsorption equilibrium. Scaling relations are determined for the critical adsorption strength required to initiate polymer adsorption onto these low-dielectric supports. Image-force repulsion shifts the equilibrium toward the desorbed state, demanding larger surface charge densities and polyelectrolyte linear charge densities for the adsorption to take place. The effect is particularly pronounced for a planar interface in a low-salt regime, where a dramatic change in the scaling behavior for the adsorption-desorption transition is predicted. For the adsorbed state, polymers with higher charge densities are displaced further from the interface by image-charge repulsions. We discuss relevant experimental evidence and argue about possible biological applications of the results.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andrey G. CherstvyORCiD, R. G. Winkler
DOI:https://doi.org/10.1021/jp304980e
ISSN:1520-6106
Title of parent work (English):The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:116
Issue:32
Number of pages:8
First page:9838
Last Page:9845
Funding institution:German Research Foundation, DFG [CH 707/5-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.