• search hit 49 of 186
Back to Result List

Fixed negative interface charges compromise organic ferroelectric field-effect transistors

  • Capacitance-voltage (C-V) and current-voltage measurements have been undertaken on metal-ferroelectric-semiconductor capacitors and ferroelectric field-effect transistors (FeFETs) using the ferroelectric polymer poly(vinylidenefluoride-trifluoroethylene) as the gate insulator and poly(3-hexylthiophene) as the active semiconductor. C-V measurements, voltage-dependence of gate currents and FeFET transfer characteristics all confirm that ferroelectric polarization is stable and only reverses when positive/negative coercive fields are exceeded for the first time. The apparent instability observed following the application of depletion voltages arises from the development of a negative interfacial charge which more than compensates the ferroelectric-induced shift, resulting in a permanent shift in threshold voltage to positive values. Application of successive bipolar voltage sweeps to a diode-connected FeFET show that significant remanent polarization is only induced in an unpoled device when the coercive field is exceeded during theCapacitance-voltage (C-V) and current-voltage measurements have been undertaken on metal-ferroelectric-semiconductor capacitors and ferroelectric field-effect transistors (FeFETs) using the ferroelectric polymer poly(vinylidenefluoride-trifluoroethylene) as the gate insulator and poly(3-hexylthiophene) as the active semiconductor. C-V measurements, voltage-dependence of gate currents and FeFET transfer characteristics all confirm that ferroelectric polarization is stable and only reverses when positive/negative coercive fields are exceeded for the first time. The apparent instability observed following the application of depletion voltages arises from the development of a negative interfacial charge which more than compensates the ferroelectric-induced shift, resulting in a permanent shift in threshold voltage to positive values. Application of successive bipolar voltage sweeps to a diode-connected FeFET show that significant remanent polarization is only induced in an unpoled device when the coercive field is exceeded during the first application of accumulation voltages. This initial polarization and its growth during subsequent bipolar voltage sweeps is accompanied by the accumulation of the fixed interfacial negative charges which cause the positive turn on voltages seen in C-V and transfer characteristics. The origin of the negative charge is ascribed either to layers of irreversible ferroelectric domains at the insulator surface or to the drift to the insulator-semiconductor interface of F-ions produced electrolytically during the application of accumulation voltages.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Rene Kalbitz, Reimund GerhardORCiDGND, D. M. Taylor
DOI:https://doi.org/10.1016/j.orgel.2012.01.034
ISSN:1566-1199
Title of parent work (English):Organic electronics : physics, materials and applications
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Ferroelectric polarization; Ferroelectric polymer; Memory device; Organic FeFET; Organic TFT; Trapped charges
Volume:13
Issue:5
Number of pages:10
First page:875
Last Page:884
Funding institution:British Council [ARC 1294]; DAAD [D/07/09993]; Fraunhofer Institute for Applied Polymer Research in Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.