• Treffer 2 von 11
Zurück zur Trefferliste

Integrated interpretation of 2D ground-penetrating radar, P-, and S-wave velocity models in terms of petrophysical properties

  • Near-surface geophysical techniques are extensively used in a variety of engineering, environmental, geologic, and hydrologic applications. While many of these applications ask for detailed, quantitative models of selected material properties, geophysical data are increasingly used to estimate such target properties. Typically, this estimation procedure relies on a two-step workflow including (1) the inversion of geophysical data and (2) the petrophysical translation of the inverted parameter models into the target properties. Standard deterministic implementations of such a quantitative interpretation result in a single best-estimate model, often without considering and propagating the uncertainties related to the two steps. We address this problem by using a rather novel, particle-swarm-based global joint strategy for data inversion and by implementing Monte Carlo procedures for petrophysical property estimation. We apply our proposed workflow to crosshole ground-penetrating radar, P-, and S-wave data sets collected at aNear-surface geophysical techniques are extensively used in a variety of engineering, environmental, geologic, and hydrologic applications. While many of these applications ask for detailed, quantitative models of selected material properties, geophysical data are increasingly used to estimate such target properties. Typically, this estimation procedure relies on a two-step workflow including (1) the inversion of geophysical data and (2) the petrophysical translation of the inverted parameter models into the target properties. Standard deterministic implementations of such a quantitative interpretation result in a single best-estimate model, often without considering and propagating the uncertainties related to the two steps. We address this problem by using a rather novel, particle-swarm-based global joint strategy for data inversion and by implementing Monte Carlo procedures for petrophysical property estimation. We apply our proposed workflow to crosshole ground-penetrating radar, P-, and S-wave data sets collected at a well-constrained test site for a detailed geotechnical characterization of unconsolidated sands. For joint traveltime inversion, the chosen global approach results in ensembles of acceptable velocity models, which are analyzed to appraise inversion-related uncertainties. Subsequently, the entire ensembles of inverted velocity models are considered to estimate selected petrophysical properties including porosity, bulk density, and elastic moduli via well-established petrophysical relations implemented in a Monte Carlo framework. Our results illustrate the potential benefit of such an advanced interpretation strategy; i.e., the proposed workflow allows to study how uncertainties propagate into the finally estimated property models, while concurrently we are able to study the impact of uncertainties in the used petrophysical relations (e.g., the influence of uncertain, user-specified parameters). We conclude that such statistical approaches for the quantitative interpretation of geophysical data can be easily extended and adapted to other applications and geophysical methods and might be an important step toward increasing the popularity and acceptance of geophysical tools in engineering practice.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Jens TronickeORCiDGND, Hendrik PaascheGND
DOI:https://doi.org/10.1190/INT-2016-0081.1
ISSN:2324-8858
ISSN:2324-8866
Titel des übergeordneten Werks (Englisch):Interpretation : a journal of subsurface characterization
Untertitel (Englisch):assessing uncertainties related to data inversion and petrophysical relations
Verlag:Society of Exploration Geophysicists
Verlagsort:Tulsa
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:30.06.2022
Band:5
Ausgabe:1
Seitenanzahl:10
Erste Seite:T121
Letzte Seite:T130
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.