The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 39 of 2352
Back to Result List

Stratigraphy and soil properties of fens: Geophysical case studies from northeastern Germany

  • The determination of the total carbon storage of peatlands is of high relevance in the context of climate-change mitigation efforts. This determination relies on data about stratigraphy and peat properties, which are conventionally collected by coring. Ground-penetrating radar (GPR) and electrical resistivity imaging (ERI) can support these point data by providing subsoil information in two-dimensional cross-sections. In this study, GPR and ERI were conducted at two groundwater-fed fen sites located in the temperate zone in north-east Germany. The fens of this region are embedded in low conductive glacial sand and are characterised by thick layers of gyttja, which can be either mineral or organic. The two study sites are representative of this region with respect to stratigraphy (total thickness, peat and gyttja types) and ecological conditions (pH-value, trophic condition). The aim of this study is to assess the suitability of GPR and ERI to detect stratigraphy and peat properties under these characteristic site conditions. ResultsThe determination of the total carbon storage of peatlands is of high relevance in the context of climate-change mitigation efforts. This determination relies on data about stratigraphy and peat properties, which are conventionally collected by coring. Ground-penetrating radar (GPR) and electrical resistivity imaging (ERI) can support these point data by providing subsoil information in two-dimensional cross-sections. In this study, GPR and ERI were conducted at two groundwater-fed fen sites located in the temperate zone in north-east Germany. The fens of this region are embedded in low conductive glacial sand and are characterised by thick layers of gyttja, which can be either mineral or organic. The two study sites are representative of this region with respect to stratigraphy (total thickness, peat and gyttja types) and ecological conditions (pH-value, trophic condition). The aim of this study is to assess the suitability of GPR and ERI to detect stratigraphy and peat properties under these characteristic site conditions. Results show that GPR clearly detects the interfaces between (i) Carex and brown-moss peat, (ii) brown-moss peat and organic gyttja, (iii) organic- and mineral gyttja, and (iv) mineral gyttja and the parent material (glacial sand). These layers differ in bulk density and the related organic matter content. ERI, however, does not delineate these layers; rather it delineates regions of varying properties. At our base-rich site, pore fluid conductivity and cation.exchange capacity are the main factors that determine peat electrical conductivity (reverse of resistivity), whereas organic matter and water content are most influential at the more acidic site. Thus the correlation between peat properties and electrical conductivity are driven by site-specific conditions, which are mainly determined by the solute load in the groundwater at fens. When the total organic deposits exceed a thickness of 5 m, the depth of investigation by GPR is limited due to increasing attenuation. This is not a limiting factor for ERI, where the transition from organic deposits to glacial sand is visible at both sites. Due to these specific sensitivities, a combined application of GPR and ERI meets the demand for up-to-date information on carbon storage of peatlands, which is, moreover, very site-specific because of the inherent variety of ecological conditions and stratigraphy between peatlands in general and between fens and bogs in particular. (C) 2016 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:J. Walter, Göran Hamann, Erika LückORCiDGND, C. Klingenfuss, Jutta Zeitz
DOI:https://doi.org/10.1016/j.catena.2016.02.028
ISSN:0341-8162
ISSN:1872-6887
Title of parent work (English):Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Electrical conductivity; Electrical resistivity imaging; Fen stratigraphy; Ground penetrating radar; Gyttja; Peat properties
Volume:142
Number of pages:14
First page:112
Last Page:125
Funding institution:Elsa-Neumann scholarship of the Federal State of Berlin
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.