• search hit 1 of 2
Back to Result List

THE FIRST SPECTROPOLARIMETRIC MONITORING OF THE PECULIAR O4 Ief SUPERGIANT zeta PUPPIS

  • The origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant zeta Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggests that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. NoThe origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant zeta Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggests that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. No magnetic field is detected in zeta Pup, as no magnetic field measurement has a significance level higher than 2.4 sigma. Still, we studied the probability of a single sinusoidal explaining the variation of the longitudinal magnetic field measurements.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Swetlana HubrigGND, A. Kholtygin, Ilya Ilyin, M. Schöller, Lida OskinovaORCiDGND
DOI:https://doi.org/10.3847/0004-637X/822/2/104
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:stars: atmospheres; stars: early-type; stars: individual (zetaPup); stars: magnetic field; stars: variables: general
Volume:822
Number of pages:7
Funding institution:Saint Petersburg State University [6.38.18.2014]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.