• Treffer 1 von 5
Zurück zur Trefferliste

Pressure-dependent bulk compressibility of a porous granular material modeled by improved contact mechanics and micromechanical approaches

  • The change of the mechanical properties of granular materials with pressure is an important topic associated with many industrial applications. In this paper we investigate the influence of hydrostatic pressure (P-e) on the effective bulk compressibility (C-eff) of a granular material by applying two modified theoretical approaches that are based on contact mechanics and micromechanics, respectively. For a granular material composed of rough grains, an extended contact model is developed to elucidate the effect of roughness of grain surfaces on bulk compressibility. At relatively low pressures, the model predicts that the decrease of bulk compressibility with pressure may be described by a power law with an exponent of -1/2 (i.e., C-eff proportional to P-e(1/2) ), but deviates at intermediate pressures. At elevated pressures beyond full contact, bulk compressibility remains almost unchanged, which may be roughly evaluated by continuum contact mechanics. As an alternative explanation of pressure-dependent bulk compressibility, weThe change of the mechanical properties of granular materials with pressure is an important topic associated with many industrial applications. In this paper we investigate the influence of hydrostatic pressure (P-e) on the effective bulk compressibility (C-eff) of a granular material by applying two modified theoretical approaches that are based on contact mechanics and micromechanics, respectively. For a granular material composed of rough grains, an extended contact model is developed to elucidate the effect of roughness of grain surfaces on bulk compressibility. At relatively low pressures, the model predicts that the decrease of bulk compressibility with pressure may be described by a power law with an exponent of -1/2 (i.e., C-eff proportional to P-e(1/2) ), but deviates at intermediate pressures. At elevated pressures beyond full contact, bulk compressibility remains almost unchanged, which may be roughly evaluated by continuum contact mechanics. As an alternative explanation of pressure-dependent bulk compressibility, we suggest a micromechanical model that accounts for effects of different types of pore space present in granular materials. Narrow and compliant inter-granular cracks are approximated by three-dimensional oblate spheroidal cracks with rough surfaces, whereas the equant and stiff pores surrounded by three and four neighboring grains are modeled as tubular pores with cross sections of three and four cusp-like corners, respectively. In this model, bulk compressibility is strongly reduced with increasing pressure by progressive closure of rough-walled cracks. At pressures exceeding crack closure pressure, deformation of the remaining equant pores is largely insensitive to pressure, with almost no further change in bulk compressibility. To validate these models, we performed hydrostatic compression tests on Bentheim sandstone (a granular rock consisting of quartz with high porosity) under a wide range of pressure. The relation between observed microstructures and measured pressure-dependent bulk compressibility is well explained by both suggested models.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Lei WangORCiD, Georg DresenORCiDGND, Erik RybackiORCiDGND, Audrey BonnelyeORCiDGND, Marco BohnhoffORCiDGND
DOI:https://doi.org/10.1016/j.actamat.2020.01.063
ISSN:1359-6454
ISSN:1873-2453
Titel des übergeordneten Werks (Englisch):Acta materialia
Untertitel (Englisch):effects of surface roughness of grains
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Erstveröffentlichung:10.02.2020
Erscheinungsjahr:2020
Datum der Freischaltung:29.09.2023
Freies Schlagwort / Tag:Bulk compressibility; Contact model; Granular materials; Micromechanical model; Roughness
Band:188
Seitenanzahl:14
Erste Seite:259
Letzte Seite:272
Fördernde Institution:China Scholarship CouncilChina Scholarship Council [201604910570]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.