• Treffer 17 von 36
Zurück zur Trefferliste

Population genomics of two odontocetes in the North Atlantic and adjacent waters

  • Due to continuously intensifying human usage of the marine environment worldwide ranging cetaceans face an increasing number of threats. Besides whaling, overfishing and by-catch, new technical developments increase the water and noise pollution, which can negatively affect marine species. Cetaceans are especially prone to these influences, being at the top of the food chain and therefore accumulating toxins and contaminants. Furthermore, they are extremely noise sensitive due to their highly developed hearing sense and echolocation ability. As a result, several cetacean species were brought to extinction during the last century or are now classified as critically endangered. This work focuses on two odontocetes. It applies and compares different molecular methods for inference of population status and adaptation, with implications for conservation. The worldwide distributed sperm whale (Physeter macrocephalus) shows a matrilineal population structure with predominant male dispersal. A recently stranded group of male sperm whalesDue to continuously intensifying human usage of the marine environment worldwide ranging cetaceans face an increasing number of threats. Besides whaling, overfishing and by-catch, new technical developments increase the water and noise pollution, which can negatively affect marine species. Cetaceans are especially prone to these influences, being at the top of the food chain and therefore accumulating toxins and contaminants. Furthermore, they are extremely noise sensitive due to their highly developed hearing sense and echolocation ability. As a result, several cetacean species were brought to extinction during the last century or are now classified as critically endangered. This work focuses on two odontocetes. It applies and compares different molecular methods for inference of population status and adaptation, with implications for conservation. The worldwide distributed sperm whale (Physeter macrocephalus) shows a matrilineal population structure with predominant male dispersal. A recently stranded group of male sperm whales provided a unique opportunity to investigate male grouping for the first time. Based on the mitochondrial control region, I was able to infer that male bachelor groups comprise multiple matrilines, hence derive from different social groups, and that they represent the genetic variability of the entire North Atlantic. The harbor porpoise (Phocoena phocoena) occurs only in the northern hemisphere. By being small and occurring mostly in coastal habitats it is especially prone to human disturbance. Since some subspecies and subpopulations are critically endangered, it is important to generate and provide genetic markers with high resolution to facilitate population assignment and subsequent protection measurements. Here, I provide the first harbour porpoise whole genome, in high quality and including a draft annotation. Using it for mapping ddRAD seq data, I identify genome wide SNPs and, together with a fragment of the mitochondrial control region, inferred the population structure of its North Atlantic distribution range. The Belt Sea harbors a distinct subpopulation oppose to the North Atlantic, with a transition zone in the Kattegat. Within the North Atlantic I could detect subtle genetic differentiation between western (Canada-Iceland) and eastern (North Sea) regions, with support for a German North Sea breading ground around the Isle of Sylt. Further, I was able to detect six outlier loci which show isolation by distance across the investigated sampling areas. In employing different markers, I could show that single maker systems as well as genome wide data can unravel new information about population affinities of odontocetes. Genome wide data can facilitate investigation of adaptations and evolutionary history of the species and its populations. Moreover, they facilitate population genetic investigations, providing a high resolution, and hence allowing for detection of subtle population structuring especially important for highly mobile cetaceans.zeige mehrzeige weniger
  • Mit der immer stärker zunehmenden Nutzung des marinen Lebensraumes durch den Menschen, häufen sich auch die Bedrohungen, wie beispielsweise Lebensraumzerstörungen, denen Cetacea ausgesetzt sind. Die Folgen aus Walfang, Überfischung und Beifang, wie auch die stärkere Verschmutzung der Meere sowie die Zunahme des generellen Lärmpegels, haben negative Effekte auf eine Vielzahl mariner Arten. Cetacea sind besonders anfällig für diese Störungen, da sie einerseits am Ende der Nahrungskette stehen und somit besonders Schadstoffe, wie bspw. PBEs, in ihren Körpern akkumulieren und andererseits durch ihr hoch angepasstes Gehör äußerst sensibel gegenüber Geräuschstörungen sind. Im Laufe des letzten Jahrhunderts wurden einige marine Säugetiere bereits ausgerottet oder fast bis an den Rand des Aussterbens gebracht. Diese Arbeit konzentriert sich auf zwei Zahnwalarten, die in ihrer Biologie und Populationsstruktur sehr verschieden sind. Sie bieten die Möglichkeit, verschiedene Methoden der Naturschutz- und Populationsgenetik anzuwenden und zuMit der immer stärker zunehmenden Nutzung des marinen Lebensraumes durch den Menschen, häufen sich auch die Bedrohungen, wie beispielsweise Lebensraumzerstörungen, denen Cetacea ausgesetzt sind. Die Folgen aus Walfang, Überfischung und Beifang, wie auch die stärkere Verschmutzung der Meere sowie die Zunahme des generellen Lärmpegels, haben negative Effekte auf eine Vielzahl mariner Arten. Cetacea sind besonders anfällig für diese Störungen, da sie einerseits am Ende der Nahrungskette stehen und somit besonders Schadstoffe, wie bspw. PBEs, in ihren Körpern akkumulieren und andererseits durch ihr hoch angepasstes Gehör äußerst sensibel gegenüber Geräuschstörungen sind. Im Laufe des letzten Jahrhunderts wurden einige marine Säugetiere bereits ausgerottet oder fast bis an den Rand des Aussterbens gebracht. Diese Arbeit konzentriert sich auf zwei Zahnwalarten, die in ihrer Biologie und Populationsstruktur sehr verschieden sind. Sie bieten die Möglichkeit, verschiedene Methoden der Naturschutz- und Populationsgenetik anzuwenden und zu vergleichen. Der weltweit verbreitete Pottwal ist matrilineal organisiert mit Weibchen, die in sozialen Gruppen in der Nähe des Äquators leben, und Männchen, die in kleinen Gruppen zu den Polen migrieren. Zum Jahresbeginn 2016 strandete eine Gruppe junger männlicher Pottwale entlang der Nordsee. Dieses Ereignis bot die einzigartige Chance, erstmals die genetische Zusammensetzung einer männlichen Pottwalgruppe zu untersuchen. Basierend auf der mitochondrialen Kontrollregion, konnte ich zeigen, dass sie von mehreren Matrilinien abstammen und in ihrer Gesamtheit die genetische Vielfalt der nordatlantischen Gesamtpopulation repräsentieren. Der Schweinswal ist innerhalb der nördlichen Hemisphäre weit verbreitet. Durch seine kleine Körpergrösse und die Präferenz für küstennahe Habitate ist er besonders anfällig gegenüber negativen anthropogenen Einflüssen. Da sowohl eine seiner Unterarten als auch einige Subpopulationen durch die IUCN als stark bedroht klassifiziert sind, ist es besonders wichtig die genetische Struktur dieser Art und ihrer Populationen zu erfassen und hochauflösende Markersysteme zu generieren, um verlässliche Informationen zum Status lokaler Populationen für weiterführende Naturschutzmaßnahmen bereitzustellen. In dieser Arbeit konnte ich die erste komplette Genomsequenz des Schweinwal in hoher Qualität bereitstellen und sie für die Analyse von ddRAD-Daten als Referenz nutzen. Mittles genomweit verteilter SNPs, sowie einem Abschnitt der mitochondrialen Kontrollregion zeigte sich, dass die Schweinswale in der Beltsee eine eigenständige Population bilden, mit einer Transitionszone zum Nord-Atlantik im Kattegat. Innerhalb des Nord-Atlantiks zeigten sich Unterschiede zwischen West (Kanada-Island) und Ost (Nordsee), sowie eine Abgrenzung deutscher Schweinswale um die Insel Sylt. Außerdem konnte ich sechs SNPs identifizieren, welche die populationsgenetische Auflösung im Nordatlantik und geographischen Distanz wiederspiegeln. Durch den Vergleich verschiedener Markersysteme konnte ich zeigen, dass sowohl einzelne Marker als auch genomweite Marker neue Erkenntnisse zu Populationsstrukturen und Anpassungen von Zahnwalen liefern. Durch die hohe Mobilität und den schwer zugänglichen Lebensraum mariner Säugetiere sind hochauflösende genetische Markersysteme der Schlüssel für ein besseres Verständnis und den Schutz dieser Arten.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Marijke AutenriethORCiDGND
Untertitel (Englisch):Evolutionary history and conservation implications
Gutachter*in(nen):Ralph TiedemannORCiDGND, C. Scott BakerORCiD, Jacob HöglundORCiDGND
Betreuer*in(nen):Ralph Tiedemann
Publikationstyp:Dissertation
Sprache:Englisch
Jahr der Erstveröffentlichung:2020
Erscheinungsjahr:2020
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:17.12.2020
Datum der Freischaltung:21.01.2021
Freies Schlagwort / Tag:Evolution; Genomik; Naturschutz; Populationsgenetik; Zahnwale; toothed whales; whole genome
conservation; evolution; genomics; population genetics
Seitenanzahl:IX, 110
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.