• Treffer 37 von 258
Zurück zur Trefferliste

Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture - From in vitro to in vivo testing

  • A gelatin-poly(lactic-co-glycolic acid), PLGA, composite scaffold, featuring a highly oriented pore channel structure, was developed as a template for articular cartilage regeneration. As a design principle the composite scaffold was optimized to contain only medical grade educts and accordingly no chemical cross linking agents or other toxicological relevant substances or methods were used. Scaffolds were synthesized using a freeze structuring method combined with an electrochemical process followed by freeze-drying. Finally, cross linking was performed using dehydrothermal treatment, which was simultaneously used for sterilization purposes. These composite scaffolds were analyzed in regard to structural and biomechanical properties, and to their degradation behavior. Furthermore, cell culture performance was tested using chondrocytes originated from joint articular cartilage tissue from 6 to 10 months old domestic pigs. Finally, the scaffolds were tested for tissue biocompatibility and their ability for tissue integration in a ratA gelatin-poly(lactic-co-glycolic acid), PLGA, composite scaffold, featuring a highly oriented pore channel structure, was developed as a template for articular cartilage regeneration. As a design principle the composite scaffold was optimized to contain only medical grade educts and accordingly no chemical cross linking agents or other toxicological relevant substances or methods were used. Scaffolds were synthesized using a freeze structuring method combined with an electrochemical process followed by freeze-drying. Finally, cross linking was performed using dehydrothermal treatment, which was simultaneously used for sterilization purposes. These composite scaffolds were analyzed in regard to structural and biomechanical properties, and to their degradation behavior. Furthermore, cell culture performance was tested using chondrocytes originated from joint articular cartilage tissue from 6 to 10 months old domestic pigs. Finally, the scaffolds were tested for tissue biocompatibility and their ability for tissue integration in a rat model. The scaffolds showed both excellent functional performance and high biocompatibility in vitro and in vivo. We expect that these gelatin-PLGA scaffolds can effectively support chondrogenesis in vivo demonstrating great potential for the use in cartilage defect treatment. (C) 2016 Elsevier B.V. All rights reserved.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:A. Thiem, M. Bagheri, C. Grosse-Siestrup, Rolf Zehbe
DOI:https://doi.org/10.1016/j.msec.2016.02.019
ISSN:0928-4931
ISSN:1873-0191
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26952462
Titel des übergeordneten Werks (Englisch):Vision research : an international journal for functional aspects of vision.
Verlag:Elsevier
Verlagsort:Amsterdam
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Erscheinungsjahr:2016
Datum der Freischaltung:22.03.2020
Freies Schlagwort / Tag:Biomechanics; Cartilage tissue engineering; Dehydrothermal cross linking; Gelatin-PLGA Scaffold; Rat model
Band:62
Seitenanzahl:11
Erste Seite:585
Letzte Seite:595
Fördernde Institution:Dritte Patentportfolio Beteiligungsgesellschaft mbH Co. KG
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.