The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 63 of 4458
Back to Result List

Growth dynamics and mechanical properties of E. coli biofilms

Wachstumsdynamik und mechanische Eigenschaften von E. coli Biofilmen

  • Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims atBiofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields.show moreshow less
  • Biofilme sind komplexe lebende Materialien, die sich bilden, wenn Bakterien in eine Matrix aus selbstproduzierten Protein- und Polysaccharidfasern eingebettet werden. Die Bildung eines Netzwerks aus extrazellulären Biopolymerfasern trägt zum Zusammenhalt des Biofilms bei, indem sie die Zell-Zell-Anhaftung fördert und die Wechselwirkungen zwischen Biofilm und Substrat vermittelt. Diese sessile Form des Bakterienwachstums wurde von Mikrobiologen eingehend untersucht, um die schädlichen Auswirkungen von Biofilmen in der Medizin und Industrie zu verhindern. Biofilme werden nämlich mit einer erhöhten Antibiotikaresistenz bei bakteriellen Infektionen in Verbindung gebracht, und sie können auch zur Verstopfung von Rohrleitungen führen oder Biokorrosion fördern. Biofilme sind jedoch auch für die Biophysik von Interesse, da sie während ihres Wachstums komplexe morphologische Muster bilden können. In jüngster Zeit werden auf dem aufstrebenden Gebiet der künstlich hergestellten lebenden Materialien die mechanischen Eigenschaften von BiofilmenBiofilme sind komplexe lebende Materialien, die sich bilden, wenn Bakterien in eine Matrix aus selbstproduzierten Protein- und Polysaccharidfasern eingebettet werden. Die Bildung eines Netzwerks aus extrazellulären Biopolymerfasern trägt zum Zusammenhalt des Biofilms bei, indem sie die Zell-Zell-Anhaftung fördert und die Wechselwirkungen zwischen Biofilm und Substrat vermittelt. Diese sessile Form des Bakterienwachstums wurde von Mikrobiologen eingehend untersucht, um die schädlichen Auswirkungen von Biofilmen in der Medizin und Industrie zu verhindern. Biofilme werden nämlich mit einer erhöhten Antibiotikaresistenz bei bakteriellen Infektionen in Verbindung gebracht, und sie können auch zur Verstopfung von Rohrleitungen führen oder Biokorrosion fördern. Biofilme sind jedoch auch für die Biophysik von Interesse, da sie während ihres Wachstums komplexe morphologische Muster bilden können. In jüngster Zeit werden auf dem aufstrebenden Gebiet der künstlich hergestellten lebenden Materialien die mechanischen Eigenschaften von Biofilmen auf verschiedenen Längenskalen untersucht und die Werkzeuge der synthetischen Biologie genutzt, um die Funktionen ihrer konstitutiven Biopolymere zu beeinflussen. In dieser Doktorarbeit soll geklärt werden, wie die Morphogenese von Escherichia coli (E. coli)-Biofilmen durch deren Wachstumsdynamik und mechanische Eigenschaften beeinflusst wird. Um dieser Frage nachzugehen, habe ich Methoden aus der Zellmechanik und der Materialwissenschaft verwendet. Zunächst habe ich untersucht, wie die biologische Aktivität in Biofilmen zu ungleichmäßigen Wachstumsmustern führt. In einer zweiten Studie untersuchte ich, wie sich die Morphogenese von E. coli-Biofilmen und ihre mechanischen Eigenschaften an einen Umweltstimulus, nämlich den Wassergehalt des Substrats, anpassen. Schließlich habe ich abgeschätzt, wie sich die mechanischen Eigenschaften von E. coli-Biofilmen verändern, wenn die Bakterien verschiedene extrazelluläre Biopolymere exprimieren. Auf nährstoffhaltigen Hydrogelen können mikrometergroße E. coli-Zellen zentimetergroße Biofilme bilden. Während dieses Prozesses führen die bakterielle Vermehrung und die Matrixproduktion zu mechanischen Spannungen im Biofilm, die sich durch die Bildung von makroskopischen Falten und delaminierten Knicken entladen. Um diese biologischen und mechanischen Phänomene miteinander in Beziehung zu setzen, habe ich mit Hilfe von Zeitraffer-Fluoreszenzaufnahmen die Zell- und Matrixoberflächendichte in den frühen und späten Phasen des E. coli-Biofilmwachstums verfolgt. Die Kolokalisierung hoher Zell- und Matrixdichten an der Peripherie geht dem Auftreten mechanischer Instabilitäten in diesem ringförmigen Bereich voraus. An diesem äußeren Ring wird ein frühes Wachstum festgestellt, das durch Zugabe von fluoreszierenden Mikrokugeln zum bakteriellen Inokulum analysiert wurde. Aber nur wenn im Zentrum des Biofilms hohe Raten der Matrixproduktion vorhanden sind, beginnt die Ausbreitung des gesamten Biofilms entlang der Feststoff-Luft-Grenzfläche. Indem ich größere fluoreszierende Partikel über einen längeren Zeitraum verfolgte, konnte ich mehrere kinematische Stadien der E. coli-Biofilmexpansion unterscheiden und einen Übergang von nichtlinearen zu linearen Geschwindigkeitsprofilen beobachten, der dem Auftreten von Falten an der Biofilmperipherie vorausgeht. Die Zerlegung der Partikelgeschwindigkeiten in ihre radialen und umlaufenden Komponenten ergab ein letztes kinematisches Stadium, in dem die Bewegung des Biofilms hauptsächlich auf die radialen delaminierten Knicke gerichtet ist, die sich vertikalisieren. Die in diesen Regionen berechneten Druckspannungen verformen die darunter liegenden Agarsubstrate erheblich. Die gleichzeitige Ansammlung höherer Zell- und Matrixdichten in einer ringförmigen Region und die Abfolge mehrerer kinematischer Stadien dürften somit das Entstehen mechanischer Instabilitäten an der Biofilm-Peripherie fördern. Diese experimentellen Ergebnisse werden voraussichtlich zukünftige Modellierungsansätze der Biofilmmorphogenese voranbringen. Die Morphogenese des E. coli-Biofilms wird voraussichtlich auch von externen Stimuli aus der Umwelt abhängen. Um zu klären, wie das Wasser zur Einstellung der Materialeigenschaften von Biofilmen genutzt werden könnte, haben wir das Wachstum, die Faltenbildung und die Steifigkeit von E. coli-Biofilmen in Abhängigkeit vom Wassergehalt der Nährsubstrate quantifiziert. Zeitraffermikroskopie und computergestützte Bildanalyse zeigten, dass Substrate mit hohem Wassergehalt die Ausbreitungskinetik des Biofilms fördern, während Substrate mit niedrigem Wassergehalt die Faltenbildung des Biofilms begünstigen. Die auf Biofilm-Querschnitten beobachteten Falten erschienen auf Substraten mit hohem Wassergehalt stärker gebogen, während sie auf Substraten mit niedrigem Wassergehalt eher vertikal verliefen. Sowohl die feuchte als auch die trockene Biomasse, die während der 4-tägigen Kultur akkumuliert wurde, war in Biofilmen, die auf Substraten mit hohem Wassergehalt gezüchtet wurden, größer, trotz der zusätzlichen Porosität innerhalb der Matrixschicht. Schließlich ergab die Mikroindentationsanalyse, dass Substrate mit niedrigem Wassergehalt die Bildung von steiferen Biofilmen begünstigten. Diese Studie zeigt, dass E. coli-Biofilme auf den Wassergehalt ihres Substrats reagieren, was für die Abstimmung ihrer Materialeigenschaften im Hinblick auf weitere Anwendungen genutzt werden könnte. Die Materialeigenschaften von Biofilmen hängen außerdem von der Zusammensetzung und Struktur der Matrix aus extrazellulären Proteinen und Polysacchariden ab. Insbesondere wurde vermutet, dass E. coli-Biofilme aufgrund eines dichten Fasernetzwerks aus Amyloid-Curli und Phosphoethanolamin-modifizierter Cellulose eine gewebeähnliche Elastizität aufweisen. Um den Beitrag dieser Komponenten zu den entstehenden mechanischen Eigenschaften von E. coli-Biofilmen zu verstehen, führten wir an Biofilmen, die aus Bakterien verschiedener Stämme gewachsen waren, Mikroeindrücke durch. Biofilme, die beide Hauptmatrixkomponenten enthalten, wiesen nicht nur eine höhere Trockenmasse, einen größeren Ausbreitungsdurchmesser und einen leicht verringerten Wassergehalt auf, sondern auch eine hohe Steifigkeit im Bereich von mehreren hundert kPa, ähnlich wie Biofilme, die nur Curli-Fasern enthalten. Das Fehlen von Amyloid-Curli-Fasern führt dagegen zu deutlich höheren Adhäsionsenergien und einem viskoelastischeren, flüssigkeitsähnlichen Materialverhalten. Die Kombination von Amyloid-Curli-Fasern und Phosphoethanolamin-modifizierten Cellulosefasern impliziert daher die Bildung eines Verbundmaterials, bei dem die Amyloid-Curli-Fasern den E. coli-Biofilmen Steifigkeit verleihen, während die Phosphoethanolamin-modifizierte Cellulose eher als Klebstoff wirkt. Diese Ergebnisse motivieren zu weiteren Studien mit gereinigten Versionen dieser Protein- und Polysaccharidkomponenten, um besser zu verstehen, wie ihre Interaktionen die Funktionen des Biofilms unterstützen. Alle drei Studien zeigen verschiedene Aspekte der Biofilm-Morphogenese, die miteinander verbunden sind. Die erste Arbeit zeigt den Zusammenhang zwischen ungleichmäßigen biologischen Aktivitäten und dem Auftreten mechanischer Instabilitäten im Biofilm auf. Die zweite Arbeit bestätigt die Anpassungsfähigkeit der Morphogenese des E. coli-Biofilms und seiner mechanischen Eigenschaften an einen Umweltreiz, nämlich Wasser. Die letzte Studie schließlich zeigt die komplementäre Rolle der einzelnen Matrixkomponenten bei der Bildung eines stabilen Biofilmmaterials, das nicht nur komplexe Morphologien bildet, sondern auch als Schutzschild für die darin enthaltenen Bakterien fungiert. Unsere experimentellen Erkenntnisse über die Morphogenese von E. coli-Biofilmen und ihre mechanischen Eigenschaften können weitere Auswirkungen auf grundlegende und angewandte Biofilm-Forschungsbereiche haben.show moreshow less

Download full text files

  • SHA-512:b280bdd7d9f39417666bf66f66f62bb8d53b5631b799b3d9c350b217893de138c0a534391bacd571713fc665d4bc8d6a78ae0db23d04b06ce98f6d90ebbcf43f

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ricardo ZiegeORCiD
URN:urn:nbn:de:kobv:517-opus4-559869
DOI:https://doi.org/10.25932/publishup-55986
Reviewer(s):Peter FratzlORCiDGND, Kerstin BlankORCiDGND, Aránzazu Del CampoORCiDGND
Supervisor(s):Peter Fratzl, Cécile Bidan, Kerstin Blank
Publication type:Doctoral Thesis
Language:English
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/07/07
Release date:2022/11/03
Tag:Biofilm; E. coli; Mechanobiologie; lebende Materialien
E. coli; biofilm; living materials; mechanobiology
Number of pages:xi, 123
RVK - Regensburg classification:WD 5100, UV 9500
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Extern / Extern
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.