• search hit 24 of 0
Back to Result List

Large spatial and temporal variations in Himalayan denudation

  • In the last decade growing interest has emerged in quantifying the spatial and temporal variations in mountain building. Until recently, insufficient data have been available to attempt such a task at the scale of large orogens such as the Himalaya. The Himalaya accommodates ongoing convergence between India and Eurasia and is a focal point for studying orogen evolution and hypothesized interactions between tectonics and climate. Here we integrate 1126 published bedrock mineral cooling ages with a transient 1D Monte-Carlo thermal-kinematic erosion model to quantify the denudation histories along similar to 2700 km of the Himalaya. The model free parameter is a temporally variable denudation rate from 50 Ma to present. Thermophysical material properties and boundary conditions were tuned to individual study areas. Monte-Carlo simulations were conducted to identify the range of denudation histories that can reproduce the observed cooling ages. Results indicate large temporal and spatial variations in denudation and these are resolvableIn the last decade growing interest has emerged in quantifying the spatial and temporal variations in mountain building. Until recently, insufficient data have been available to attempt such a task at the scale of large orogens such as the Himalaya. The Himalaya accommodates ongoing convergence between India and Eurasia and is a focal point for studying orogen evolution and hypothesized interactions between tectonics and climate. Here we integrate 1126 published bedrock mineral cooling ages with a transient 1D Monte-Carlo thermal-kinematic erosion model to quantify the denudation histories along similar to 2700 km of the Himalaya. The model free parameter is a temporally variable denudation rate from 50 Ma to present. Thermophysical material properties and boundary conditions were tuned to individual study areas. Monte-Carlo simulations were conducted to identify the range of denudation histories that can reproduce the observed cooling ages. Results indicate large temporal and spatial variations in denudation and these are resolvable across different tectonic units of the Himalaya. More specifically, across > 1000 km of the southern Greater Himalaya denudation rates were highest (similar to 1.5-3 mm/yr) between similar to 10 and 2 Ma and lower (0.5-2.6 mm/yr) over the last 2 My. These differences are best determined in the NW-Himalaya. In contrast to this, across the similar to 2500 km length of the northern Greater Himalaya denudation rates vary over length scales of similar to 300-1700 km. Slower denudation (<1 mm/yr) occurred between 10 and 4 Ma followed by a large increase (1.2-2.6 mm/yr) in the last similar to 4 Ma. We find that only the southern Greater Himalayan Sequence clearly supports a continuous co-evolution of tectonics, climate and denudation. Results from the higher elevation northern Greater Himalaya suggest either tectonic driven variations in denudation due to a ramp-flat geometry in the main decollement and/or recent glacially enhanced denudation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Rasmus Christoph ThiedeORCiDGND, Todd EhlersORCiDGND
DOI:https://doi.org/10.1016/j.epsl.2013.03.004
ISSN:0012-821X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Himalaya; erosion; exhumation; low temperature chronology; thermal modeling
Volume:371
Issue:2
Number of pages:16
First page:278
Last Page:293
Funding institution:German Research Council (DFG) [TH1317/1-1, EH329/2-1]; US National Science Foundation [DMS-CMG 0724656]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.