• search hit 16 of 26
Back to Result List

Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective

  • This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of theThis study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Markus Koch, Marina SaphiannikovaORCiD, Svetlana SanterORCiDGND, Olga GuskovaORCiD
DOI:https://doi.org/10.1021/acs.jpcb.7b07350
ISSN:1520-6106
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28832166
Title of parent work (English):The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:121
Number of pages:14
First page:8854
Last Page:8867
Funding institution:German Research Foundation (DFG) [GU 1510/3-1, SA 1657/13-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.