• Treffer 13 von 211
Zurück zur Trefferliste

Nonradiative recombination in perovskite solar cells

  • Perovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley–Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi‐Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state‐of‐the‐art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump‐probe techniques give complementary access to the interfacial recombinationPerovskite solar cells combine high carrier mobilities with long carrier lifetimes and high radiative efficiencies. Despite this, full devices suffer from significant nonradiative recombination losses, limiting their VOC to values well below the Shockley–Queisser limit. Here, recent advances in understanding nonradiative recombination in perovskite solar cells from picoseconds to steady state are presented, with an emphasis on the interfaces between the perovskite absorber and the charge transport layers. Quantification of the quasi‐Fermi level splitting in perovskite films with and without attached transport layers allows to identify the origin of nonradiative recombination, and to explain the VOC of operational devices. These measurements prove that in state‐of‐the‐art solar cells, nonradiative recombination at the interfaces between the perovskite and the transport layers is more important than processes in the bulk or at grain boundaries. Optical pump‐probe techniques give complementary access to the interfacial recombination pathways and provide quantitative information on transfer rates and recombination velocities. Promising optimization strategies are also highlighted, in particular in view of the role of energy level alignment and the importance of surface passivation. Recent record perovskite solar cells with low nonradiative losses are presented where interfacial recombination is effectively overcome—paving the way to the thermodynamic efficiency limit.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • pmnr772.pdfeng
    (4534KB)

    SHA-1: aa3533c7d6630dafd7635ef30070e71ec00cfd80

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Christian Michael WolffORCiDGND, Pietro CaprioglioORCiD, Martin StolterfohtORCiD, Dieter NeherORCiDGND
URN:urn:nbn:de:kobv:517-opus4-437626
DOI:https://doi.org/10.25932/publishup-43762
ISSN:1866-8372
Titel des übergeordneten Werks (Deutsch):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Untertitel (Englisch):the role of interfaces
Schriftenreihe (Bandnummer):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (772)
Publikationstyp:Postprint
Sprache:Englisch
Datum der Erstveröffentlichung:22.11.2019
Erscheinungsjahr:2019
Veröffentlichende Institution:Universität Potsdam
Datum der Freischaltung:22.11.2019
Freies Schlagwort / Tag:interfacial recombination; open‐circuit voltage; perovskite solar cells; photoluminescence
Ausgabe:772
Seitenanzahl:20
Quelle:Advanced Materials (2019) Art. 1902762 DOI: 10.1002/adma.201902762
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
6 Technik, Medizin, angewandte Wissenschaften / 66 Chemische Verfahrenstechnik / 660 Chemische Verfahrenstechnik
Peer Review:Referiert
Publikationsweg:Open Access
Fördermittelquelle:DEAL Wiley
Lizenz (Deutsch):License LogoCC-BY - Namensnennung 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.